Advertisement

Photocatalytic degradation of sulfur black dye over Ce-TiO2 under UV irradiation: removal efficiency and identification of degraded species

  • Azza Touati
  • Lobna Jlaiel
  • Wahiba NajjarEmail author
  • Sami Sayadi
Original Paper
  • 11 Downloads

Abstract

TiO2 and Ce-TiO2 photocatalysts have been synthesized via sol–gel method and characterized by various techniques. Cerium incorporation maintains anatase phase formation, reduces the band gap energy, and inhibits the electron–hole recombination leading to a better photocatalytic response. Photocatalytic activities are explored on the degradation of sulfur black dye under UV light in the presence of H2O2. Photocatalytic reaction parameters have been assessed. Indeed, sulfur black dye color removal reached 92% at the optimal conditions in presence of 1% Ce-TiO2 catalyst. Identification of degradation products of sulfur black dye was achieved by LC/MS.

Keywords

Ce-doped TiO2 Photodegradation Sulfur black dye LC/MS analysis 

Notes

Acknowledgements

The authors gratefully acknowledge the Centre de Biotechnologie de Sfax and the Institut Supérieur des Etudes Préparatoires en Biologie Géologie de la Soukra for financial support.

References

  1. Ajmal A, Majeed I, Malika RN, Iqbal M, Arif Nadeem M, Hussain I, Yousaf S, Zeshan G, Mustafa MI, Zafar M, Nadeem A (2016) Photocatalytic degradation of textile dyes on Cu2O-CuO/TiO2 anatase powders. J Environ Chem Eng 4:2138–2146CrossRefGoogle Scholar
  2. Alahiane S, Qourzal S, El Ouardi M, Belmouden M, Assabbane A, Ait-Ichou Y (2013) Adsorption et photodégradation du colorant indigo carmine en milieu aqueux en présence de TiO2/UV/O2 (Adsorption and photocatalytic degradation of indigo carmine dye in aqueous solutions using TiO2/UV/O2). J Mater Environ Sci 4:239Google Scholar
  3. Augugliaro V, Baiocchi C, Bianco Prevot A, Garcia-Lopez E, Loddo V, Malato S, Marci G, Palmisano L, Pazzi M, Pramauro E (2002) Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere 49:1223–1230CrossRefGoogle Scholar
  4. Balachandran U, Eror NG (1982) Raman spectra of titanium dioxide. J Solid State Chem 42:276–282CrossRefGoogle Scholar
  5. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dyecontaining effluents: a review. Bioresour Technol 58:217–227CrossRefGoogle Scholar
  6. Bansal P, Sud D (2013) Photocatalytic degradation of commercial dye, CI Reactive Red 35 in aqueous suspension: degradation pathway and identification of intermediates by LC/MS. J Mol Catal A Chem 374–375:66–72CrossRefGoogle Scholar
  7. Bansal P, Singh D, Sud D (2010) Photocatalytic degradation of azo dye in aqueous TiO2 suspension: reaction pathway and identification of intermediates products by LC/MS. Sep Purif Technol 72:357–365CrossRefGoogle Scholar
  8. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  9. Cao S, Wang H, Yu F, Shi MA, Chen SH, Weng X, Liu Y, Wu Z (2016a) Catalyst performance and mechanism of catalytic combustion of dichloromethane (CH2Cl2) over Ce doped TiO2. J Colloid Interface Sci 463:233–241CrossRefGoogle Scholar
  10. Cao M, Wang P, Ao Y, Wang C, Hou J, Qian J (2016b) Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: graphene oxide/magnetite/cerium-doped titani. J Colloid Interface Sci 467:129–139CrossRefGoogle Scholar
  11. Coronado JM, Maira AJ, Martinez-Arias A, Conesa JC, Soria J (2002) EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts. J Photochem Photobiol A Chem 150:213–221CrossRefGoogle Scholar
  12. Daneshvar N, Salari D, Khataee AR (2003) Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J Photochem Photobiol A Chem 157:111–116CrossRefGoogle Scholar
  13. Dellamatrice PM, Stenico MES, Beraldo de Moraes LA, Fiore MF, Monteiro RTR (2017) Degradation of textile dyes by cyanobacteria. Br J Microbiol 48(1):25–31CrossRefGoogle Scholar
  14. Dulman V, Man SMC, Olariu RI, Buhaceanu R, Dumitras M, Bunia I (2012) A new heterogeneous catalytic system for decolorization and mineralization of Orange G acid dye based on hydrogen peroxide and a macroporous chelating polymer. Dyes Pigm 95:79–88CrossRefGoogle Scholar
  15. Dumeignil F, Sato K, Imamura M, Matsubayashi N, Payen E, Shimada H (2003) Modification of structural and acidic properties of sol–gel-prepared alumina powders by changing the hydrolysis ratio. Appl Catal A Gen 241:319–329CrossRefGoogle Scholar
  16. Fabbri D, Calza P, Prevot AB (2010) Photoinduced transformations of Acid Violet 7 and Acid Green 25 in the presence of TiO2 suspension. J Photochem Photobiol A Chem 213:14–22CrossRefGoogle Scholar
  17. Fan J, Hu X, Xie Z, Zhang K, Wang J (2012) Photocatalytic degradation of azo dye by novel Bi-based photocatalyst Bi4TaO8I under visible-light irradiation. Chem Eng J 179:44–51CrossRefGoogle Scholar
  18. Fuerte A, Hernández-Alonso MD, Maira AJ, Martínez-Arias A, Fernández-García M, Conesa JC, Soria J (2001) Visible light-activated nanosized doped-TiO2 photocatalysts. Chem Commun 24:2718–2719CrossRefGoogle Scholar
  19. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem 1:1–21CrossRefGoogle Scholar
  20. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem 9:1–12CrossRefGoogle Scholar
  21. Gosetti F, Chiuminatto U, Mazzucco E, Calabrese G, Gennaro MC, Marengo E (2013) Non-target screening of Allura Red AC photodegradation products in a beverage through ultra high performance liquid chromatography coupled with hybrid triple quadrupole/linear ion trap mass spectrometry. Food Chem 136:617–623CrossRefGoogle Scholar
  22. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, New YorkGoogle Scholar
  23. Gu L, Song FY, Zhu NW (2011) An innovative electrochemical degradation of 1-diazo-2-naphthol-4-sulfonic acid in the presence of Bi2Fe4O9. Appl Catal B Environ 110:186–194CrossRefGoogle Scholar
  24. Hisaindee S, Meetani MA, Rauf MA (2013) Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. Trends Anal Chem 49:31–44CrossRefGoogle Scholar
  25. Hisatomi T, Kubotaa J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535CrossRefGoogle Scholar
  26. Iliev V, Tomova D, Bilyarska L (2018) Promoting the oxidative removal rate of 2,4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation. J Photochem Photobiol A Chem 351:69–77CrossRefGoogle Scholar
  27. Imran M, Riaz S, Naseem S (2015) Synthesis and characterization of titania nanoparticles by sol-gel technique. Mater Today Proc 2(10):5455–5461CrossRefGoogle Scholar
  28. Inturi SNR, Boningari T, Suidan M, Smirniotis PG (2014) Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl Catal B Environ 144:333–342CrossRefGoogle Scholar
  29. Jiang Y, Bahlawane N (2009) Changes in the structural and optical properties of CeO2 nanocrystalline films: effect of film thickness. J Alloys Compd 485:152–155CrossRefGoogle Scholar
  30. Knorr FJ, Mercado CC, McHale JL (2008) Trap-state distributions and carrier transport in pure and mixed-phase TiO2: influence of contacting solvent and interphasial electron transfer. J Phys Chem C 112:12786–12794CrossRefGoogle Scholar
  31. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14CrossRefGoogle Scholar
  32. Lee CH, Shie JL, Yang YT, Chang CY (2016) Photoelectrochemical characteristics, photodegradation and kinetics of metal and non-metal elements co-doped photocatalyst for pollution removal. Chem Eng J 303:477–488CrossRefGoogle Scholar
  33. Li G, Liu C, Liu Y (2006) Different effects of cerium ions doping on properties of anatase and rutile TiO2. Appl Sur Sci 253:2481–2486CrossRefGoogle Scholar
  34. Li JT, Bai B, Song YL (2010) Degradation of Acid orange 3 in aqueous solution by combination of Fly ash/H2O2 and ultrasound irradiation. Indian J Chem Technol 17:198–203Google Scholar
  35. Liu Y, Chen X, Li J, Burda C (2005) Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere 61:11–18CrossRefGoogle Scholar
  36. Liu J, Li J, Sedhain A, Lin J, Jiang H (2008) Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays. J Phys Chem C 112:17127–17132CrossRefGoogle Scholar
  37. Liu Y, Yu H, Lv Z, Zhan S, Yang J, Peng X, Ren Y, Wu X (2012) Simulated-sunlight-activated photocatalysis of Methylene Blue using cerium-doped SiO2/TiO2 nanostructured fibers. J Environ Sci 24(10):1867–1875CrossRefGoogle Scholar
  38. Liu Y, Fang P, Cheng Y, Gao Y, Chen F, Liu Z, Dai Y (2013) Study on enhanced photocatalytic performance of cerium doped TiO2-based nanosheets. Chem Eng J 219:478–485CrossRefGoogle Scholar
  39. Logamani BP, Rajeswari R, Poongodi G (2017) Enhanced photocatalytic activity of rare earth metal (Nd and Gd) doped ZnO nanostructures. Mech Mater Sci Eng J Magnolithe 9(2):100–104Google Scholar
  40. Maximo C, Amorim MTP, Costa-Ferreira M (2003) Biotransformation of industrial reactive azo dyes by Geotrichum sp. CCMI 1019. Enzyme Microb Technol 32:145–151CrossRefGoogle Scholar
  41. Meetani A, Hisaindee SM, Abdullah F, Ashraf SS, Rauf MA (2010) Liquid chromatography tandem mass spectrometry analysis of photodegradation of a diazo compound: a mechanistic study. Chemosphere 80:422–427CrossRefGoogle Scholar
  42. Meksi M, Kochkar H, Berhault G, Guillard C (2015) Effect of cerium content and post-thermal treatment on doped anisotropic TiO2 nanomaterials and kinetic study of the photodegradation of formic acid. J Mol Catal A Chem 409:162–170CrossRefGoogle Scholar
  43. Mills A, McGrady M (2008) A study of new photocatalyst indicator inks. J Photochem Photobiol A Chem 193:228–236CrossRefGoogle Scholar
  44. More AT, Vira A, Fogel S (1989) Biodegradation of trans-1,2-dichloroethylene by methane-utilizing bacteria in an aquifer simulator. Environ Sci Technol 23:403–406CrossRefGoogle Scholar
  45. Mura GM, Ganadu ML, Lombardi P, Lubinu G, Branca M, Maida V (2002) A preliminary comparison between hydrogenase and oxygen as electron acceptors in irradiated aqueous dispersion of titanium dioxide. J Photochem Photobiol A Chem 148:199–204CrossRefGoogle Scholar
  46. Myilsamy M, Murugesan V, Mahalakshmi M (2015) Indium and cerium co-doped mesoporous TiO2 nanocomposites with enhanced visible light photocatalytic activity. Appl Catal A Gen 492:212–222CrossRefGoogle Scholar
  47. Nair RR, Arulraj J, Devi KRS (2016) Ceria doped titania nano particles: synthesis and photocatalytic activity. Mater Today Proc 3:1643–1649CrossRefGoogle Scholar
  48. Neppolian B, Choi H, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 46:1173–1181CrossRefGoogle Scholar
  49. Nguyen TA, Juang R-S (2013) Treatment of waters and wastewaters containing sulfur dyes: a review. Chem Eng J 219:109–117CrossRefGoogle Scholar
  50. Nick S (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293CrossRefGoogle Scholar
  51. Nitoi I, Oancea P, Raileanu M, Crisan M, Constantin L, Cristea I (2015) UV–VIS photocatalytic degradation of nitrobenzene from water using heavy metal doped titania. J Ind Eng Chem 21:677–682CrossRefGoogle Scholar
  52. Nuengmatcha P, Chanthai S, Mahachai R, Oh WC (2016) Visible light-driven photocatalytic degradation of rhodamine B and industrial dyes (texbrite BAC-L and texbrite NFW-L) by ZnO-graphene-TiO2 composite. J Environ Chem Eng 4:2170–2177CrossRefGoogle Scholar
  53. Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett 32:364–365CrossRefGoogle Scholar
  54. Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C Photochem Rev 15:1–20CrossRefGoogle Scholar
  55. Poulios I, Avranas A, Rekliti E, Zouboulis A (2000) Photocatalytic oxidation of Auramine O in the presence of semiconducting oxides. J Chem Technol Biotechnol 75:205–212CrossRefGoogle Scholar
  56. Prevot AB, Baiocchi C, Brussino M, Pramauro E, Savarino P, Augugliaro V, Marci G, Palmisano L (2001) Photocatalytic degradation of Acid Blue 80 in aqueous solutions containing TiO2 suspensions. Environ Sci Technol 35:971–976CrossRefGoogle Scholar
  57. Rao X, Chu CL, Sun Q (2016) Synthesis of porous Ce-doped titania coating containing CaTiO3 by MAO and its apatite inducing ability. Surf Coat Tech 302:117–125CrossRefGoogle Scholar
  58. Reli M, Ambrožová N, Šihor M, Matějová L, Čapek L, Obalová L, Matěj Z, Kotarba A, Kočí K (2015) Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. App Catal B Environ 178:108–116CrossRefGoogle Scholar
  59. Sadik WA (2007) Effect of inorganic oxidants in photodecolourization of an azo dye. J Photochem Photobiol A 191:132–137CrossRefGoogle Scholar
  60. Sapari N (2002) Treatment and reuse of textile wastewater by overland flow. Desalination 106:179–182CrossRefGoogle Scholar
  61. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 99:16646–16654CrossRefGoogle Scholar
  62. Shi Z-L, Du C, Yao S-H (2011) Preparation and photocatalytic activity of cerium doped anatase titanium dioxide coated magnetite composite. J Tai Inst Chem Eng 42:652–657CrossRefGoogle Scholar
  63. Shi Z, Yang P, Tao F, Zhou R (2016) New insight into the structure of CeO2–TiO2 mixed oxides and their excellent catalytic performances for 1,2-dichloroethane oxidation. Chem Eng J 295:99–108CrossRefGoogle Scholar
  64. Silva AMT, Silva CG, Drazic G, Faria JL (2009) Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catal Today 144:13–18CrossRefGoogle Scholar
  65. Stock N, Peller J, Vinodgopal K, Kamat PV (2000) Combinative sonolysis and photocatalysis for textile dye degradation. Environ Sci Technol 34:1747–1750CrossRefGoogle Scholar
  66. Subramani A, Byrappa K, Ananda S, Rai KL, Ranganathaiah C, Yoshimura M (2007) Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon. Bull Mater Sci 30(1):37–41CrossRefGoogle Scholar
  67. Tabaï A, Bechiri O, Abbessi M (2017) Study of the degradation of a toxic dye by the catalytic system (H1.5Fe1.5P2W12Mo6O61, 22H2O)/H2O2. Euro-Mediterr J Environ Integr 2:1–8CrossRefGoogle Scholar
  68. Tieng S, Kanaev A, Chhor K (2011) New homogeneously doped Fe(III)–TiO2 photocatalyst for gaseous pollutant degradation. Appl Catal A Gen 399:191–197CrossRefGoogle Scholar
  69. Touati A, Hammedi T, Najjar W, Ksibi Z, Sayadi S (2016) Photocatalytic degradation of textile wastewater in presence of hydrogen peroxide: Effect of cerium doping titania. J Ind Eng Chem 35:36–44CrossRefGoogle Scholar
  70. Vaiano V, Sacco O, Sannino D, Ciambelli P (2015) Process intensification in the removal of organic pollutants from wastewater using innovative photocatalysts obtained coupling Zinc Sulfide based phosphors with nitrogen doped semiconductors. J Clean Produc 100:208–211CrossRefGoogle Scholar
  71. Vaiano V, Matarangolo M, Sacco O, Sannino D (2017) Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts. App Catal B Environ 209:621–630CrossRefGoogle Scholar
  72. Vaiano V, Matarangolo M, Murcia JJ, Rojas H, Navío JA, Hidalgo MC (2018) Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. App Catal B Environ 225:197–206CrossRefGoogle Scholar
  73. Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. J Photochem Photobiol C Photochem Rev 24:64–82CrossRefGoogle Scholar
  74. Wan YW, Chang YM, Ting JM (2010) Room-temperature synthesis of single-crystalline anatase TiO2 nanowires. Cryst Growth Des 10:1646–1651CrossRefGoogle Scholar
  75. Wang L, Yuan F, Liu L, Mominou N, Li S, Li C, Wang W (2015) Transformations of phenol into fuel over TiO2–CeO2/ZSM-5 aided by ultrasound and ultraviolet. J Ind Eng Chem 21:494–499CrossRefGoogle Scholar
  76. Wu CH (2008) Effects of operational parameters on the decolorization of C.I. Reactive Red 198 in UV/TiO2-based systems. Dyes Pigment 77:31–38CrossRefGoogle Scholar
  77. Xiong Z, Zhao Y, Zhang J, Zheng C (2015) Efficient photocatalytic reduction of CO2 into liquid products over cerium doped titania nanoparticles synthesized by a sol–gel auto-ignited method. Fuel Process Technol 135:6–13CrossRefGoogle Scholar
  78. Xu J, Ao Y, Fu D, Yuan C (2009) Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity. Colloids Surf A 334:107–111CrossRefGoogle Scholar
  79. Xue W, Zhang G, Xu X, Yang X, Liu C, Xu Y (2011) Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate. Chem Eng J 167:397–402CrossRefGoogle Scholar
  80. Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Hasnain Isa M (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36CrossRefGoogle Scholar
  81. Zhang WF, He YL, Zhang MS, Yin Z, Chen Q (2000) Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys 33:912–916CrossRefGoogle Scholar
  82. Zhu XD, Wang YJ, Sun RJ, Zhou DM (2013) Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 92:925–932CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Azza Touati
    • 1
  • Lobna Jlaiel
    • 2
  • Wahiba Najjar
    • 1
    • 3
    Email author
  • Sami Sayadi
    • 2
  1. 1.LR01ES08 Laboratoire de Chimie des Matériaux et Catalyse, Faculté des Sciences de TunisUniversité Tunis El ManarEl Manar TunisTunisia
  2. 2.Laboratoire de Bioprocédés EnvironnementauxCentre de Biotechnologie de SfaxSfaxTunisia
  3. 3.Institut Supérieur des Études Préparatoires en Biologie Géologie-SoukraUniversité de CarthageAmilcar TunisTunisia

Personalised recommendations