Advertisement

Adsorption and inhibitive performance of 3-methylquinoxaline-2(1H)-thione against mild steel corrosion in phosphoric acid solution

  • K. Benbouya
  • N. Dkhireche
  • A. Rochdi
  • A. Chebab
  • R. Touir
  • M. Ebn Touhami
  • M. El Bakri
  • M. Sfaira
Original Paper
  • 215 Downloads

Abstract

Inhibitive performance of 3-methylquinoxaline-2 (1H) -thione denoted (MQ = S) on mild steel corrosion in 1.0 M H3PO4 was investigated using electrochemical measurements. It is revealed that this product acts as an excellent corrosion inhibitor for mild steel in 1.0 M H3PO4 where its inhibition reaches 93% at 5 × 10−4 M and increases with immersion time. Potentiodynamic polarization curves indicated that this compound acts as a mixed-type inhibitor. In addition, the MQ = S has its inhibition at high temperature. It was found that the adsorption of this compound obeyed the Langmuir adsorption isotherm.

Keywords

Quinoxaline derivative Corrosion inhibition Mild steel Phosphoric acid Electrochemical techniques 

Notes

Acknowledgements

The authors appreciate the experimental support given by all members of ‘Laboratoire d’Ingénierie des Matériaux et d’Environnement: Modélisation et Application, Faculté des Sciences, Université Ibn Tofail’.

Compliance with ethical standards

Conflict of interest

All of the authors have declared no conflicts of interest.

References

  1. Adardour K, Touir R, Elbakri M, Ramli Y, Touhami ME, El Kafsaoui H, Kalonji Mubengayi C, Essassi EM (2013) Thermodynamic study of mild steel corrosion in hydrochloric acid by new class synthesized quinoxaline derivatives: part II. Res Chem Intermed 39:4175–4188CrossRefGoogle Scholar
  2. Aramaki K, Hagiwara M, Nishihara H (1987) Adsorption and corrosion inhibition effect of anions plus an organic cation on iron in 1 M HClO4 and the HSAB principle. J Electrochem Soc 134:1896–1901CrossRefGoogle Scholar
  3. Bammou L, Belkhaouda M, Salghi R, Benali O, Zarrouk A, Zarrok H, Hammouti B (2014) Corrosion inhibition of steel in sulfuric acidic solution by the chenopodium ambrosioides extracts. J Assoc Arab Univ Basic Appl Sci 16:83–90Google Scholar
  4. Benabdellah M, Benkaddour M, Hammouti B, Bendahhou M, Aouniti A (2006) Inhibition of steel corrosion in 2 M H3PO4 by artemisia oil. Appl Surf Sci 252:6212–6217CrossRefGoogle Scholar
  5. Benbouya K, Zerga B, Sfaira M, Taleb M, Ebn Touhami M, Hammouti B, Benzeid H, Essassi EM (2012) WL, IE and EIS studies on the corrosion behaviour of mild steel by 7-substituted 3-methylquinoxalin-2 (1H)-ones and thiones in hydrochloric acid medium. Int J Electrochem Sci 7:6313–6330Google Scholar
  6. Benbouya K, Forsal I, Elbakri M, Anik T, Touir R, Bennajah M, Chebab D, Rochdi A, Mernari B, Ebn Touhami M (2014) Influence of pyridazine derivative on corrosion inhibition of mild steel in acidic media. Res Chem Intermed 40:1267–1281CrossRefGoogle Scholar
  7. Berthier F, Diard JP, Michel R (2001) Distinguishability of equivalent circuits containing CPEs: part I. Theoretical part. J Electroanal Chem 510:1–11CrossRefGoogle Scholar
  8. Bommersbach P, Alemany-Dumont C, Millet JP, Normand B (2005) Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim Acta 51:1076–1084CrossRefGoogle Scholar
  9. Bouckamp A (1993) Users manual equivalent circuit, ver. 4.51Google Scholar
  10. Bozorg M, Shahrabi Farahani T, Neshati J, Chaghazardi Z, Mohammadi Ziarani G (2014) Myrtus communis as green inhibitor of copper corrosion in sulfuric acid. Indus Eng Chem Res 53:4295–4303CrossRefGoogle Scholar
  11. Brandt H, Fischer M, Schwabe K (1970) Untersuchungen über die sparbeizwirkungorganischer sulfide im system eisenschwefelsäure. Corros Sci 10:631–639CrossRefGoogle Scholar
  12. Brown DJ, Taylor EC, Ellman JA (2004) Heterocyclic compounds: the Quinoxalines: supplement II, vol 61. John Wiley, Hoboken, New Jersey, p 443Google Scholar
  13. Brug GJ, Van Den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem 176:275–295CrossRefGoogle Scholar
  14. Caliskan N, Akbas E (2011) The inhibition effect of some pyrimidine derivatives on austenitic stainless steel in acidic media. Mater Chem Phys 126:983–988CrossRefGoogle Scholar
  15. Cheeseman GWH, Cookson RF (1979) Condensed pyrazines. In: Cheeseman A, Taylor EC (eds) The chemistry of heterocyclic compounds, 35th edn. John Wiley, New JerseyCrossRefGoogle Scholar
  16. Chitra S, Parameswari K, Vidhya M, Kalishwari M, Selvaraj A (2011) Evaluation of quinoxalines as corrosion inhibitors for mild steel in acid environment. Int J Electrochem Sci 6:4593–4613Google Scholar
  17. Donnelly B, Downie TC, Grzekowiak R, Hamburg HR, Short D (1978) The effect of electronic delocalization in organic groups R in substituted thiocarbamoyl RCSNH2 and related compounds on inhibition efficiency. Corros Sci 18:109–116CrossRefGoogle Scholar
  18. El Ouali I, Hammouti B, Aouniti A, Ramli Y, Azougagh M, Essassi EM, Bouachrine M (2010) Thermodynamic characterisation of steel corrosion in HCl in the presence of 2-phenylthieno (3, 2-b) quinoxaline. J Mater Environ Sci 1:1–8Google Scholar
  19. Faustin M, Lebrini M, Robert F, Roos C (2011) Corrosion studies of C38 steel by alkaloids extract of a tropical plant type. Int J Electrochem Sci 6:4095–4113Google Scholar
  20. Fiaud C, Harch A, Mallouh D, Tzinmann M (1993) The inhibition of iron corrosion by acetylenic alcohols in acid solutions at high temperature. Corros Sci 35:1437–1444CrossRefGoogle Scholar
  21. Georges C, Rocca E, Steinmetz P (2008) Synergistic effect of tolutriazol and sodium carboxylates on zinc corrosion in atmospheric conditions. Electrochimi Acta 53:4839–4845CrossRefGoogle Scholar
  22. Ghanbari A, Attar MM, Mahdavian M (2010) Corrosion inhibition performance of three imidazole derivatives on mild steel in 1 M phosphoric acid. Mater Chem Phys 124:1205–1209CrossRefGoogle Scholar
  23. Hegazy MA (2015) Novel cationic surfactant based on triazole as a corrosion inhibitor for carbon steel in phosphoric acid produced by dihydrate wet process. J Mol Liq 208:227–236CrossRefGoogle Scholar
  24. Hong S, Chen W, Zhang Y, Luo HQ, Li M, Li NB (2013) Investigation of the inhibition effect of trithiocyanuric acid on corrosion of copper in 3.0 wt% NaCl. Corros Sci 66:308–314CrossRefGoogle Scholar
  25. Ivanov ES (1986) Inhibitors for metal corrosion in acid media, metallurgy, MoscowGoogle Scholar
  26. Jorcin JB (2007) Thesis, INP, France. http://ethesis.inp-toulouse.fr/archive/00000494/
  27. Khaled KF, Al-Qahtani MM (2009) The inhibitive effect of some tetrazole derivatives towards Al corrosion in acid solution: chemical, electrochemical and theoretical studies. Mater Chem Phys 113:150–158CrossRefGoogle Scholar
  28. Kliškic M, Radoševic J, Gudic S (1997) Pyridine and its derivatives as inhibitors of aluminium corrosion in chloride solution. J Appl Electrochem 27:947–952CrossRefGoogle Scholar
  29. Lagrenee M, Mernari B, Bouanis M, Traisnel M, Bentiss F (2002) Study of the mechanism and inhibiting efficiency of 3, 5-bis (4-methylthiophenyl)-4H-1, 2, 4-triazole on mild steel corrosion in acidic media. Corros Sci 44:573–588CrossRefGoogle Scholar
  30. Leçe HD, Emregül KC, Atakol O (2008) Difference in the inhibitive effect of some Schiff base compounds containing oxygen, nitrogen and sulfur donors. Corros Sci 50:1460–1768CrossRefGoogle Scholar
  31. Li W, Hu L, Zhang S, Hou B (2011) Effects of two fungicides on the corrosion resistance of copper in 3.5% NaCl solution under various conditions. Corros Sci 53:735–745CrossRefGoogle Scholar
  32. Martinez S, Stern I (2002) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system. Appl Surf Sci 199:83–89CrossRefGoogle Scholar
  33. Menon P, Gopal M, Prasad R (2004) Influence of two insecticides, chlorpyrifos and quinalphos, on arginine ammonification and mineralizable nitrogen in two tropical soil types. J Agric Food Chem 52:7370–7376CrossRefGoogle Scholar
  34. Mernari B, El Attari H, Traisnel M, Bentiss F, Lagrenee M (1998) Inhibiting effects of 3, 5-bis (n-pyridyl)-4-amino-1, 2, 4-triazoles on the corrosion for mild steel in 1 M HCl medium. Corros Sci 40:391–399. doi: 10.1016/S0010-938X(97)00142-X CrossRefGoogle Scholar
  35. Musa AY, Mohamad AB, Kadhum AAH, Takriff MS, Tien LT (2011) Synergistic effect of potassium iodide with phthalazone on the corrosion inhibition of mild steel in 1.0 M HCl. Corros Sci 53:3672–3677. doi: 10.1016/j.corsci.2011.07.010 CrossRefGoogle Scholar
  36. Obot IB, Obi-Egbedi NO, Odozi NW (2010) Acenaphtho [1, 2-b] quinoxaline as a novel corrosion inhibitor for mild steel in 0.5 M H2SO4. Corros Sci 52:923–926CrossRefGoogle Scholar
  37. Olasunkanmi LO, Kabanda MM, Ebenso EE (2016) Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: electrochemical and quantum chemical studies. Phys E Low Dimens Syst Nanostruct 76:109–126CrossRefGoogle Scholar
  38. Rochdi A, Kassou O, Dkhireche N, Touir R, El Bakri M, Ebn Touhami M, Sfaira M, Mernari B, Hammouti B (2014) Inhibitive properties of 2, 5-bis (n-methylphenyl)-1, 3, 4-oxadiazole and biocide on corrosion, biocorrosion and scaling controls of brass in simulated cooling water. Corros Sci 80:442–452CrossRefGoogle Scholar
  39. Rochdi A, Touir R, El Bakri M, Touhami ME, Bakkali S, Mernari B (2015) Protection of low carbon steel by oxadiazole derivatives and biocide against corrosion in simulated cooling water system. J Environ Chem Eng 3:233–242CrossRefGoogle Scholar
  40. Sagüés AA, Kranc SC, Moreno EI (1996) Evaluation of electrochemical impedance with constant phase angle component from the galvanostatic step response of steel in concrete. Electrochim Acta 41:1239–1243CrossRefGoogle Scholar
  41. Sankarapapavinasam S, Pushpanaden F, Ahmed MF (1991) Piperidine, piperidones and tetrahydrothiopyrones as inhibitors for the corrosion of copper in H2SO4. Corros Sci 32:193–203CrossRefGoogle Scholar
  42. Satapathy AK, Gunasekaran G, Sahoo SC, Kumar A, Rodrigues PV (2009) Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution. Corros Sci 51:2848–2856CrossRefGoogle Scholar
  43. Singh DDN, Chaudhary RS, Prakash B, Agarwal CV (1979) Inhibitive efficiency of some substituted thioureas for the corrosion of aluminium in nitric acid. Br Corros J 14:235–239CrossRefGoogle Scholar
  44. Stern M, Geary AL (1957) Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc 104:56–63CrossRefGoogle Scholar
  45. Tazouti A, Galai M, Touir R, Touhami ME, Zarrouk A, Ramli Y, Saraçoglu M, Kaya S, Kanderimili F, Kaya C (2016) Experimental and theoretical studies for mild steel corrosion inhibition in 1.0 M HCl by three new quinoxalinone derivatives. J Mol Liq 221:815–832CrossRefGoogle Scholar
  46. Thomas KJ, Tyagi P (2010) Synthesis, spectra, and theoretical investigations of the triarylamines based on 6 H-indolo [2, 3-b] quinoxaline. J Org Chem 75:8100–8111CrossRefGoogle Scholar
  47. Tian H, Li W, Hou B (2013) Electrochemical and theoretical investigation of triazole derivatives as corrosion inhibitors for copper in 3.5% NaCl solution. Int J Electrochem Sci 8:8513–8529Google Scholar
  48. Touir R, Cenoui M, El Bakri M, Ebn Touhami M (2008) Sodium gluconate as corrosion and scale inhibitor of ordinary steel in simulated cooling water. Corros Sci 50:1530–1537CrossRefGoogle Scholar
  49. Touir R, Ebn Touhami M, Lakhrissi B (2014) Mild steel corrosion inhibition in 200 ppm NaCl by new surfactant. LAP LAMBRT Acadimic Publishing, SaarbruckenGoogle Scholar
  50. Verma C, Singh P, Quraishi MA (2015) A thermodynamical, electrochemical and surface investigation of bis (indolyl) methanes as green corrosion inhibitors for mild steel in 1 M hydrochloric acid solution. JAAUBAS. doi: 10.1016/j.jaubas.2015.04.003 CrossRefGoogle Scholar
  51. Wang D, Xiang B, Liang Y, Song S, Liu C (2014) Corrosion control of copper in 3.5 wt% NaCl solution by domperidone: experimental and theoretical study. Corros Sci 85:77–86CrossRefGoogle Scholar
  52. Zarrok H, Zarrouk A, Salghi R, Hammouti B, Chahboun N, Ben Hmamou D, Hmammouchi R, Lakhlifi T, Rochdi A, El Assyry A (2014) Inhibition of carbon steel corrosion in HCL media by lipid oil melia. Mor J Chem 2:10–21Google Scholar
  53. Zarrouk A, Hammouti B, Touzani R, Al-Deyab SS, Zertoubi M, Dafali A, Elkadiri S (2011) Comparative study of new quinoxaline derivatives towards corrosion of copper in nitric acid. Int J Electrochem Sci 6:4939–4952Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire d’Ingénierie des Matériaux et d’Environnement: Modélisation et Application, Faculté des SciencesUniversité Ibn TofaîlKénitraMorocco
  2. 2.Laboratoire Énergétique, Matériaux et Environnement, École Supérieure de TechnologieUniversité Mohammed VSaléMorocco
  3. 3.Centre Régional des Métiers de l’Education et de la Formation (CRMEF)RabatMorocco
  4. 4.Laboratoire d’Ingénierie des Matériaux, de Modélisation et d’Environnement, LIMME, Faculté des Sciences Dhar El MahrazUniversité Sidi Mohammed Ben Abdellah, USMBAFèsMorocco

Personalised recommendations