Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe: ZnO nanocomposite material

  • Samreen Heena Khan
  • Bhawana PathakEmail author
  • M. H. Fulekar
Original Paper


In present work, the magnetically separable Fe–ZnO nanocomposites were successfully synthesized using metal nitrate precursors via hybrid precipitation and sonochemical method. The structural, morphological and optical properties of the nanocomposites were characterized by TEM, FE-SEM, XRD, FT-IR, UV–DRS, EDX and VSM. The XRD result shows that the Fe–ZnO consists of dual phases, i.e., ZnO and Fe, and the mean crystal size of the composite material was 66.7 nm. The microstructure analysis (TEM and FE-SEM) was carried out to study the size, internal and external surface morphology of the nanocomposite material. The average particle size was 30 and 85 nm for pure ZnO and Fe–ZnO, respectively. The EDX analysis confirms the presence of ZnO and Fe in the nanocomposite materials without any impurity. The optical band gap of the synthesized material was confirmed using UV–DRS, and it was found 3.23 eV for pure ZnO, whereas for Fe–ZnO it was 2.2 eV making it efficient for the visible light photocatalysis as well. FT-IR data indicate the characteristic vibrations at 454 cm−1 for Zn–O and 554 cm−1 for Fe–O–Zn. The magnetic property of the synthesized material was analyzed using VSM and results confirmed that the material exhibits room temperature ferromagnetism. The photodegradation activity of Fe–ZnO nanocomposite was evaluated on an organophosphate pesticide (chlorpyrifos) at different concentration under UV irradiation and analyzed by FT-IR, Raman and UV–Vis spectroscopy. The mineralization of pesticide was confirmed by reduction in TOC and COD values. Up to 93.5% degradation (10 ppm) was observed in 60 min using Fe–ZnO. The as-synthesized Fe–ZnO was found very effective for the degradation and mineralization of chlorpyrifos.


Pesticide XRD FE-SEM Sonochemical Mineralization 


Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141(3):555–570CrossRefGoogle Scholar
  2. 2.
    Dehghani MH, Fadaei AM (2012) Photocatalytic oxidation of organophosphorus pesticides using zinc oxide. Res J Chem Environ 16(3):104–109Google Scholar
  3. 3.
    Eskenazi B, Marks AR, Bradman A, Harley K, Barr DB, Johnson C, Jewell NP (2007) Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect 115(5):792CrossRefGoogle Scholar
  4. 4.
    John EM, Shaike JM (2015) Chlorpyrifos: pollution and remediation. Environ Chem Lett 13(3):269–291CrossRefGoogle Scholar
  5. 5.
    Korade DL, Fulekar MH (2009) Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. J Hazard Mater 172(2–3):1344–1350CrossRefGoogle Scholar
  6. 6.
    Derbalah A, Ismail A, Shaheen S (2013) Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water. Polish J Chem Technol 15(3):25–34CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Hou Y, Chen F, Xiao Z, Zhang J, Hu X (2011) The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: the effect of parameters and degradation pathway. Chemosphere 82(8):1109–1115CrossRefGoogle Scholar
  8. 8.
    Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manag 92(3):311–330CrossRefGoogle Scholar
  9. 9.
    Mahmoodi NM, Arami M, Limaee NY, Gharanjig K (2007) Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. J Hazard Mater 145(1–2):65–71CrossRefGoogle Scholar
  10. 10.
    Gupta VK, Eren T, Atar N, Yola ML, Parlak C, Karimi-Maleh H (2015) CoFe2O4@ TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J Mol Liq 208:122–129CrossRefGoogle Scholar
  11. 11.
    Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7(3):191–204CrossRefGoogle Scholar
  12. 12.
    Giri PK, Bhattacharyya S, Chetia B, Kumari S, Singh DK, Iyer PK (2011) High-yield chemical synthesis of hexagonal ZnO nanoparticles and nanorods with excellent optical properties. J Nanosci Nanotechnol 11:1–6CrossRefGoogle Scholar
  13. 13.
    Elamin N, Elsanousi A (2013) Synthesis of ZnO nanostructures and their photocatalytic activity. J Appl Ind Sci 1(1):32–35Google Scholar
  14. 14.
    Johar MA, Afzal RA, Alazba AA, Manzoor U (2015) Photocatalysis and bandgap engineering using ZnO nanocomposites. Adv Mater Sci Eng. CrossRefGoogle Scholar
  15. 15.
    Farrokhi M, Hosseini SC, Yang JK, Shirzad-Siboni M (2014) Application of ZnO–Fe3O4 nanocomposite on the removal of azo dye from aqueous solutions: kinetics and equilibrium studies. Water Air Soil Pollut 225(9):2113CrossRefGoogle Scholar
  16. 16.
    Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68(3):312–319CrossRefGoogle Scholar
  17. 17.
    Palmero P (2015) Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods. Nanomaterials 5(2):656–696CrossRefGoogle Scholar
  18. 18.
    Güler SH, Güler Ö, Evin E, Islak S (2016) Electrical and optical properties of ZnO-milled Fe2O3 nanocomposites produced by powder metallurgy route. Opt Int J Light Electron Opt 127(6):3187–3191CrossRefGoogle Scholar
  19. 19.
    Naushad M, Khan MR, ALOthman ZA, Al-Muhtaseb AAH, Awual M, Alqadami AA (2016) Water purification using cost-effective material prepared from agricultural waste: kinetics, isotherms, and thermodynamic studies. CLEAN Soil Air Water 44(8):1036–1045CrossRefGoogle Scholar
  20. 20.
    Il’ves VG, Sokovnin SY, Murzakaev AM (2016) Inluence of Fe-doping on the structural and magnetic properties of ZnO nanopowders, produced by the method of pulsed electron beam evaporation. J Nanotechnol. CrossRefGoogle Scholar
  21. 21.
    Zhao FY, Ding MR, Chen J, Li YL, Li LH (2015) Preparation of Fe3O4 with solvothermal method and its electrochemical properties. Appl mech mater 748:111–114. CrossRefGoogle Scholar
  22. 22.
    Hu Y, Chen HJ (2008) Preparation and characterization of nanocrystalline ZnO particles from a hydrothermal process. J Nanopart Res 10(3):401–407CrossRefGoogle Scholar
  23. 23.
    Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125(15):4430–4431CrossRefGoogle Scholar
  24. 24.
    Devi LG, Murthy BN, Kumar SG (2009) Photocatalytic activity of V5+, Mo6+ and Th4+ doped polycrystalline TiO2 for the degradation of chlorpyrifos under UV/solar light. J Mol Catal A Chem 308(1–2):174–181CrossRefGoogle Scholar
  25. 25.
    Liu Y, Sun L, Wu J, Fang T, Cai R, Wei A (2015) Preparation and photocatalytic activity of ZnO/Fe2O3 nanotube composites. Mater Sci Eng B 194:9–13CrossRefGoogle Scholar
  26. 26.
    Raja K, Ramesh PS, Geetha D (2014) Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochim Acta Part A Mol Biomol Spectrosc 120:19–24CrossRefGoogle Scholar
  27. 27.
    Lin Y, Jiang D, Lin F, Shi W, Ma X (2007) Fe-doped ZnO magnetic semiconductor by mechanical alloying. J Alloys Compd 436(1–2):30–33. CrossRefGoogle Scholar
  28. 28.
    Barreto GP, Morales G, Quintanilla MLL (2013) Microwave-assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development. J Mater. CrossRefGoogle Scholar
  29. 29.
    Zak AK, Wang HZ, Yousefi R, Golsheikh AM, Ren ZF (2013) Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason Sonochem 20(1):395–400. CrossRefGoogle Scholar
  30. 30.
    Goswami PP, Choudhury HA, Chakma S, Moholkar VS (2013) Sonochemical synthesis and characterization of manganese ferrite nanoparticles. Ind Eng Chem Res 52(50):17848–17855CrossRefGoogle Scholar
  31. 31.
    Beltrán JJ, Barrero CA, Punnoose A (2015) Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys Chem Chem Phys 17(23):15284–15296. CrossRefGoogle Scholar
  32. 32.
    Singh RPP, Hudiara IS, Panday S, Rana SB (2016) The effect of Co doping on the structural, optical, and magnetic properties of Fe-doped ZnO nanoparticles. J Supercond Novel Magn 29(3):819–827. CrossRefGoogle Scholar
  33. 33.
    Xie J, Zhou Z, Lian Y, Hao Y, Li P, Wei Y (2015) Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV–Vis light irradiation. Ceram Int 41(2):2622–2625. CrossRefGoogle Scholar
  34. 34.
    Biswas S, Sarkar S, De D, Sabyasachi S, Bhaumik A, Ray R (2015) Semiconducting properties of a ferromagnetic nanocomposite: Fe@ZnO. Indian J Phys 89(7):703–708. CrossRefGoogle Scholar
  35. 35.
    Castel V, Youssef JB, Brosseau C (2007) Broadband ferromagnetic resonance measurements in Ni/ZnO and Ni γ-Fe2O3 nanocomposites. J Nanomater 2007(1):4. CrossRefGoogle Scholar
  36. 36.
    Mashhadizadeh MH, Karami Z (2011) Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1, 3, 4-thiadiazole and their determination by ICP–OES. J Hazard Mater 190(1–3):1023–1029. CrossRefGoogle Scholar
  37. 37.
    Deraz NM, Alarifi A (2012) Fabrication and characterization of pure and doped Zn/Fe nanocomposites. Int J Electrochem Sci 7:3809–3816Google Scholar
  38. 38.
    Basith NM, Vijaya JJ, Kennedy LJ, Bououdina M, Shenbhagaraman R, Jayavel R (2015) Influence of Fe-doping on the structural, morphological, optical, magnetic and antibacterial effect of ZnO nanostructures. Nanosci Nanotechnol 15:1–11. CrossRefGoogle Scholar
  39. 39.
    Sánchez-Mora E, Fernádez-Candelario M, Gómez-Barojas E, Pérez-Rodríguez F (2013) Influence of Fe ions on the optical properties of Fe–ZnO inverse opals. J Supercond Novel Magn 26(7):2447–2449. CrossRefGoogle Scholar
  40. 40.
    Karamat S, Rawat RS, Lee P, Tan TL, Ramanujan RV (2014) Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation. Prog Nat Sci Mater Int 24(2):142–149. CrossRefGoogle Scholar
  41. 41.
    Naushad M, Ahamad T, Sharma G, Ala’a H, Albadarin AB, Alam MM, Ghfar AA (2016) Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chem Eng J 300:306–316CrossRefGoogle Scholar
  42. 42.
    Xiao J, Kuc A, Pokhrel S, Schowalter M, Parlapalli S, Rosenauer A, Heine T (2011) Evidence for Fe2+ in wurtzite coordination: iron doping stabilizes ZnO nanoparticles. Small 7(20):2879–2886. CrossRefGoogle Scholar
  43. 43.
    Kumar A, Sharma G, Naushad M, Kumar A, Kalia S, Guo C, Mola GT (2017) Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A 337:118–131CrossRefGoogle Scholar
  44. 44.
    Xiong G, Pal U, Serrano JG, Ucer KB, Williams RT (2006) Photoluminescence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys Status Solidi 3(10):3577–3581. CrossRefGoogle Scholar
  45. 45.
    Hariani PL, Faizal M, Setiabudidaya D (2013) Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int J Environ Sci Dev 4(3):336. CrossRefGoogle Scholar
  46. 46.
    Irimpan L, Nampoori VPN, Radhakrishnan P, Deepthy A, Krishnan B (2007) Size-dependent fluorescence spectroscopy of nano colloids of ZnO. J Appl Phys 102(6):063524. CrossRefGoogle Scholar
  47. 47.
    Yue Q, Cheng J, Li G, Zhang K, Zhai Y, Wang L, Liu J (2011) Fluorescence property of ZnO nanoparticles and the interaction with bromothymol blue. J Fluoresc 21(3):1131–1135. CrossRefGoogle Scholar
  48. 48.
    Arshad M, Ansari MM, Ahmed AS, Tripathi P, Ashraf SSZ, Naqvi AH, Azam A (2015) Band gap engineering and enhanced photoluminescence of Mg-doped ZnO nanoparticles synthesized by wet chemical route. J Lumin 161:275–280. CrossRefGoogle Scholar
  49. 49.
    Panneerselvam P, Morad N, Lim YL (2013) Separation of Ni(II) ions from aqueous solution onto maghemite nanoparticle (γ-Fe3O4) enriched with clay. Sep Sci Technol 48(17):2670–2680. CrossRefGoogle Scholar
  50. 50.
    Parra-Palomino A, Perales-Perez O, Singhal R, Tomar M, Hwang J, Voyles PM (2008) Structural, optical, and magnetic characterization of monodisperse Fe-doped ZnO nanocrystals. J Appl Phys 103(7):07D121CrossRefGoogle Scholar
  51. 51.
    Muhamad SG (2010) Kinetic studies of catalytic photodegradation of chlorpyrifos insecticide in various natural waters. Arab J Chem 3(2):127–133CrossRefGoogle Scholar
  52. 52.
    Kuryliszyn-Kudelska I, Dobrowolski WD, Hadžić B, Romčević N, Sibera D, Narkiewicz U, Dziawa P (2010) Magnetic properties of nanocrystalline ZnO doped with MnO and CoO. J Phys Conf Ser 200(7):072058. CrossRefGoogle Scholar
  53. 53.
    Babu B, Sundari GR, Ravindranadh K, Yadav MR, Ravikumar RVSSN (2014) Structural, spectroscopic and magnetic characterization of undoped, Ni2+ doped ZnO nanopowders. J Magn Magn Mater 372:79–85. CrossRefGoogle Scholar
  54. 54.
    Saleh R, Djaja NF (2014) UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices Microstruct 74:217–233. CrossRefGoogle Scholar
  55. 55.
    Sibera D, Jędrzejewski R, Mizeracki J, Presz A, Narkiewicz U, Łojkowski W (2009) Synthesis and characterization of ZnO doped with Fe2O3—hydrothermal synthesis and calcination process. Acta Phys Polonica A. CrossRefGoogle Scholar
  56. 56.
    Khan SH, Surya Prabha R, Pathak B, Fulekar MH (2016) Development of zinc oxide nanoparticle by sonochemical method and study of their physical and optical properties. AIP Conf Proc 1724:020108. CrossRefGoogle Scholar
  57. 57.
    Jamil K, Shaik AP, Mahboob M, Krishna D (2005) Effect of organophosphorus and organochlorine pesticides (monocrotophos, chlorpyriphos, dimethoate, and endosulfan) on human lymphocytes in-vitro. Drug Chem Toxicol 27(2):133–144CrossRefGoogle Scholar
  58. 58.
    Affam AC, Chaudhuri M (2013) Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. J Environ Manag 130:160–165CrossRefGoogle Scholar
  59. 59.
    Neti N, Zakkula V (2013) Analysis of chlorpyrifos degradation by Kocuria sp. using GC and FTIR. Curr Biotica 6:466–472Google Scholar
  60. 60.
    Faghihzadeh F, Anaya NM, Schifman LA, Oyanedel-Craver V (2016) Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnol Environ Eng 1(1):1. CrossRefGoogle Scholar
  61. 61.
    Bootharaju MS, Pradeep T (2012) Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir 28(5):2671–2679. CrossRefGoogle Scholar
  62. 62.
    Baruah S, Sinha SS, Ghosh B, Pal SK, Raychaudhuri AK, Dutta J (2009) Photoreactivity of ZnO nanoparticles in visible light: effect of surface states on electron transfer reaction. J Appl Phys 105(7):074308CrossRefGoogle Scholar
  63. 63.
    Decremps F, Pellicer-Porres J, Saitta AM, Chervin JC, Polian A (2002) High-pressure Raman spectroscopy study of wurtzite ZnO. Phys Rev B 65(9):092101CrossRefGoogle Scholar
  64. 64.
    Hu Y, Ji C, Wang X, Huo J, Liu Q, Song Y (2017) The structural, magnetic and optical properties of TM n@(ZnO) 42 (TM = Fe Co, and Ni) hetero-nanostructure. Sci Rep 7(1):16485. CrossRefGoogle Scholar
  65. 65.
    Fadaei A, Kargar M (2013) Photocatalytic degradation of chlorpyrifos in water using titanium dioxide and zinc oxide. Fresenius Environ Bull 22(8A):2442–2447Google Scholar
  66. 66.
    Naushad M, Sharma G, Kumar A, Sharma S, Ghfar AA, Bhatnagar A, Khan MR (2018) Efficient removal of toxic phosphate anions from the aqueous environment using pectin based quaternary amino anion exchanger. Int J Biol Macromol 106:1–10CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Samreen Heena Khan
    • 1
  • Bhawana Pathak
    • 2
    Email author
  • M. H. Fulekar
    • 2
  1. 1.School of NanoscienceCentral University of GujaratGandhinagarIndia
  2. 2.School of Environment and Sustainable DevelopmentCentral University of GujaratGandhinagarIndia

Personalised recommendations