Advertisement

Preparation of attapulgite/TiO2/graphene composite and its application for the photocatalytic degradation of chlorotetracycline

  • Wenjie Liu
  • Tao Du
  • Qianxun Ru
  • Shixiang Zuo
  • Chao Yao
Original Paper

Abstract

An attapulgite/TiO2/graphene composite (ATP/TiO2/RGO) was prepared and characterized by X-ray powder diffraction, Fourier transform infrared spectra, Raman spectra, transmission electron microscope, scanning electron microscope, ultraviolet–visible diffuse reflectance spectra, photoluminescence spectra and X-ray photoelectron spectroscopy. Results showed that TiO2 nanoparticles were loaded on the surface of ATP uniformly and the introduction of RGO successfully expanded the light response range of TiO2. The photocatalytic performance of the composite toward the degradation of chlorotetracycline was then evaluated, and a plausible mechanism was proposed. It was found that the ternary composites exhibited excellent photoactivity when compared with the ATP/TiO2 binary material and pure TiO2, indicating that the synergistic effect of TiO2, ATP and RGO greatly enhanced the photocatalytic activity of the present ternary composite.

Keywords

Graphene Attapulgite TiO2 Photocatalysis Degradation of chlorotetracycline 

Notes

Acknowledgements

This work was supported by Technology Support Plan of Changzhou (CE 20155008), Technology Support Plan of Huaian (HAG 201630), Advanced Catalysis and Green Manufacturing Collaborative Innovation Center of Jiangsu Province (ACGM 2016-06-07) and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM 2012110).

Supplementary material

41204_2018_35_MOESM1_ESM.doc (224 kb)
Supplementary material 1 (DOC 224 kb)

References

  1. 1.
    Xue J, Ma S, Zhou Y, Zhang Z, He M (2015) Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl Mater Interfaces 7:9630–9637CrossRefGoogle Scholar
  2. 2.
    Migliore L, Fiori M, Spadoni A, Galli E (2012) Biodegradation of oxytetracycline by Pleurotus ostreatus, mycelium: a mycoremediation technique. J Hazard Mater 215–216:227–232CrossRefGoogle Scholar
  3. 3.
    Heinze A, Holzgrabe U (2006) Determination of the extent of protein binding of antibiotics by means of an automated continuous ultrafiltration method. Int J Pharm 311:108–112CrossRefGoogle Scholar
  4. 4.
    Kishida K (2011) Simplified extraction of tetracycline antibiotics from milk using a centrifugal ultrafiltration device. Food Chem 126:687–690CrossRefGoogle Scholar
  5. 5.
    Mahamallik P, Saha S, Pal A (2015) Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly. Chem Eng J 276:155–165CrossRefGoogle Scholar
  6. 6.
    Boxi SS, Paria S (2015) Visible light induced enhanced photocatalytic degradation of organic pollutants in aqueous media using Ag doped hollow TiO2 nanospheres. RSC Adv 5:37657–37668CrossRefGoogle Scholar
  7. 7.
    Li D, Shi W (2016) Recent developments in visible-light photocatalytic degradation of antibiotics. Chin J Catal 37:792–799CrossRefGoogle Scholar
  8. 8.
    Zuo S, Chen Y, Liu W, Yao C, Li X, Li Z, Ni C, Liu X (2017) A facile and novel construction of attapulgite/Cu2O/Cu/g-C3N4 with enhanced photocatalytic activity for antibiotic degradation. Ceram Int 43:3324–3329CrossRefGoogle Scholar
  9. 9.
    Zuo S, Chen J, Liu W, Yao C, Mao H, Li Y, Fu Y, Liu X (2017) Photocatalytic activity of flower-like carbon/Ag3PO4 composite microspheres for pollutant degradation. Mater Lett 190:134–137CrossRefGoogle Scholar
  10. 10.
    Vázquez A, Hernández-Uresti DB, Obregón S (2016) Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic. Appl Surf Sci 386:412–417CrossRefGoogle Scholar
  11. 11.
    Wang R, Jiang G, Ding Y, Wang Y, Sun X, Wang X, Chen W (2011) Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. ACS Appl Mater Interfaces 3:4154–4158CrossRefGoogle Scholar
  12. 12.
    Jiang G, Lin Z, Zhu L, Ding Y, Tang H (2010) Preparation and photoelectrocatalytic properties of titania/carbon nanotube composite films. Carbon 48:3369–3375CrossRefGoogle Scholar
  13. 13.
    Liu W, Wang C, Wang L (2017) Photocatalyzed facile synthesis of α-chloro aryl ketones with polyaniline-g-C3N4-TiO2 composite under visible light. Ind Eng Chem Res 56:6114–6123CrossRefGoogle Scholar
  14. 14.
    Jin Q, Ikeda T, Fujishima M, Tada H (2011) Nickel(II) oxide surface-modified titanium(IV) dioxide as a visible-light-active photocatalyst. Chem Commun 47:8814–8816CrossRefGoogle Scholar
  15. 15.
    Harb M, Sautet P, Raybaud P (2013) Anionic or cationic S-doping in bulk anatase TiO2: insights on optical absorption from first principles calculations. J Phys Chem C 117:8892–8902CrossRefGoogle Scholar
  16. 16.
    Zhu C, Wang X, Huang Q, Huang L, Xie J, Qing C, Chen T (2013) Removal of gaseous carbon bisulfide using dielectric barrier discharge plasmas combined with TiO2 coated attapulgite catalyst. Chem Eng J 225:567–573CrossRefGoogle Scholar
  17. 17.
    Abdo J, Zaier R, Hassan E, Al-Sharji H, Al-Shabibi A (2014) ZnO-clay nanocomposites for enhance drilling at HTHP conditions. Surf Interface Anal 46:970–974CrossRefGoogle Scholar
  18. 18.
    Pushpaletha P, Lalithambika M (2011) Modified attapulgite: an efficient solid acid catalyst for acetylation of alcohols using acetic acid. Appl Clay Sci 51:424–430CrossRefGoogle Scholar
  19. 19.
    Lu L, Li X, Liu XQ, Wang ZM, Sun LB (2015) Enhancing hydrostability and catalytic performance of metal-organic frameworks by hybridizing with attapulgite, a natural clay. J Phys Chem A 3:6998–7005Google Scholar
  20. 20.
    Zhang L, Lv F, Zhang W, Li R, Zhong H, Zhao Y, Zhang Y, Wang X (2009) Photo degradation of methyl orange by attapulgite–SnO2–TiO2 nanocomposites. J Hazard Mater 171:294–300CrossRefGoogle Scholar
  21. 21.
    Song P, Zhang X, Sun M, Cui X, Lin Y (2012) Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Nanoscale 4:1800–1804CrossRefGoogle Scholar
  22. 22.
    Vu THT, Nguyen TTT, Nguyen PHT, Do MH, Au HT, Nguyen TB, Nguyen DL, Park JS (2012) Fabrication of photocatalytic composite of multi-walled carbon nanotubes/TiO2 and its application for desulfurization of diesel. Mater Res Bull 47:308–314CrossRefGoogle Scholar
  23. 23.
    Zhang M, Huang L, Chen J, Li C, Shi G (2014) Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes. Adv Mater 26:7588–7592CrossRefGoogle Scholar
  24. 24.
    Mai YJ, Zhang D, Qiao YQ, Gu CD, Wang XL, Tu JP (2012) MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J Power Sources 216:201–207CrossRefGoogle Scholar
  25. 25.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRefGoogle Scholar
  26. 26.
    Zhang J, Chen A, Wang L, Li X, Huang W (2016) Striving toward visible light photocatalytic water splitting based on natural silicate clay mineral: the interface modification of attapulgite at the atomic-molecular level. ACS Sustain Chem Eng 4:4601–4607CrossRefGoogle Scholar
  27. 27.
    Huang YF, Lin CW (2012) Polyaniline-intercalated graphene oxide sheet and its transition to a nanotube through a self-curling process. Polymer 53:1079–1085CrossRefGoogle Scholar
  28. 28.
    Papoulis D, Komarneni S, Nikolopoulou A, Tsolis-Katagas P, Panagiotaras D, Kacandes HG, Zhang P, Yin S, Sato T, Katsuki H (2010) Palygorskite- and halloysite-TiO2 nanocomposites: synthesis and photocatalytic activity. Appl Clay Sci 50:118–124CrossRefGoogle Scholar
  29. 29.
    Bai X, Wang L, Zong R, Lv Y, Sun Y, Zhu Y (2013) Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir 29:3097–4105CrossRefGoogle Scholar
  30. 30.
    Yu J, Ma T, Liu S (2011) Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys 13:3491–3501CrossRefGoogle Scholar
  31. 31.
    Zhang G, Wang H, Guo S, Wang J, Liu J (2015) Synthesis of Cu/TiO2/organo-attapulgite fiber nanocomposite and its photocatalytic activity for degradation of acetone in air. Appl Surf Sci 362:257–264CrossRefGoogle Scholar
  32. 32.
    Wu H, Ma J, Li Y, Zhang C, He H (2014) Photocatalytic oxidation of gaseous ammonia over fluorinated TiO2, with exposed (001) facets. Appl Catal B Environ 152–153:82–87CrossRefGoogle Scholar
  33. 33.
    Ren HT, Jia SY, Wu Y, Wu SH, Zhang TH, Han X (2014) Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and visible light. Ind Eng Chem Res 53:17645–17653CrossRefGoogle Scholar
  34. 34.
    Kim HI, Moon GH, Monllor-satoca D, Park Y, Choi W (2012) Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet. J Phys Chem C 116:1535–1543CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Xiao F, Guo Y, Wang S, Liu Y (2013) One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl Mater Inter 5:2227–2233CrossRefGoogle Scholar
  36. 36.
    Wang M, Han J, Hu Y, Guo R, Yin Y (2016) Carbon-incorporated NiO/TiO2 mesoporous shells with p–n heterojunctions for efficient visible light photocatalysis. ACS Appl Mater Inter 8:29511–29521CrossRefGoogle Scholar
  37. 37.
    Lee H, Lee E, Lee CH, Lee K (2011) Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation. J Ind Eng Chem 17:468–473CrossRefGoogle Scholar
  38. 38.
    Yao Y, Qin J, Chen H, Wei F, Liu X, Wang J, Wang S (2015) One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants. J Hazard Mater 291:28–37CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wenjie Liu
    • 1
  • Tao Du
    • 1
  • Qianxun Ru
    • 1
  • Shixiang Zuo
    • 1
  • Chao Yao
    • 1
  1. 1.School of Petrochemical EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations