Advertisement

Fully coupled control of a spark-ignited engine in driving cycle simulations

  • Manuel DorschEmail author
  • Jens Neumann
  • Christian Hasse
Original Paper
  • 3 Downloads

Abstract

The fuel consumption of vehicles with spark-ignited (SI) gasoline engines in transient driving cycles depends greatly on the thermodynamics and its interplay with the calibration of the engine control. For the simulation of these complex phenomena covering engine physics and applied control, a new methodology is presented. A functional model of the engine control unit is introduced together with a driver control. It is coupled to a physical modeling framework consisting of a crank angle-based engine model and a vehicle drivetrain model. As a key feature, a novel predictive SI combustion sub-model is integrated, using quasi-dimensional modeling approaches for flame propagation, turbulence, and ignition delay. In a modular validation process, each sub-model and its interaction in the coupled simulation environment are evaluated successfully. The fully coupled model is then used to predict the fuel consumption in driving cycles under varying calibration strategies of the engine control.

Keywords

Driving cycles Spark-ignited engines Simulation Engine control 

Notes

Acknowledgements

Parts of the presented results were gathered during a Ph.D. scholarship at BMW.

References

  1. 1.
    Andert, J., Xia, F., Klein, S., Guse, D., Savelsberg, R., Tharmakulasingam, R., Thewes, M., Scharf, J.: Road-to-rig-to-desktop: virtual development using real-time engine modelling and powertrain co-simulation. Int. J. Engine Res. 04, 146808741876722 (2018)CrossRefGoogle Scholar
  2. 2.
    Barasa, P., Tian, Y., Hardes, S., Owlia, S., Limaye, P., Bailey, D., Sehgal, T.: Virtual engine, controls, and calibration development in automated co-simulation environment. SAE Technical Paper 2016-01-0090 (2016)Google Scholar
  3. 3.
    Blizard, N.C., Keck, J.C.: Experimental and theoretical investigation of turbulent burning model for internal combustion engines. SAE Technical Paper 740191 (1974)Google Scholar
  4. 4.
    Brand, D., Onder, C., Guzzella, L.: Virtual NO sensor for spark-ignition engines. Int. J. Engine Res. 8(2), 221–240 (2007)CrossRefGoogle Scholar
  5. 5.
    De Bellis, V., Severi, E., Fontanesi, S., Bozza, F.: Hierarchical 1D/3D approach for the development of a turbulent combustion model applied to a VVA turbocharged engine. Part II: combustion model. Energy Proc. 45, 1027–1036 (2014)CrossRefGoogle Scholar
  6. 6.
    D’Errico, G., Ferrari, G., Onorati, A., Cerri, T.: Modeling the pollutant emissions from a S.I. engine. SAE Technical Paper 2002-01-0006 (2002)Google Scholar
  7. 7.
    Dingel, O., Ross, J., Trivic, I., Cavina, N., Rioli, M.: Model-based assessment of hybrid powertrain solutions. SAE Technical Paper 2011-24-0070 (2011)Google Scholar
  8. 8.
    Dorsch, M.: Detailed Modeling of SI Engines in Fuel Consumption Simulations for Functional Analysis. Logos, Berlin (2016)Google Scholar
  9. 9.
    Dorsch, M., Neumann, J., Hasse, C.: Detailed modeling of SI engines in driving cycle simulations for fuel consumption analysis. FISITA Technical Paper F2014-CET-017 (2014)Google Scholar
  10. 10.
    Dorsch, M., Neumann, J., Hasse, C.: Application of a phenomenological model for the engine-out emissions of unburned hydrocarbons in driving cycles. J. Energy Resour. ASME 138(2), 022201 (2016)CrossRefGoogle Scholar
  11. 11.
    Eriksson, L., Nielsen, L.: Modeling and Control of Engines and Drivelines. Wiley, Hoboken (2014)CrossRefGoogle Scholar
  12. 12.
    Gamma Technologies LLC. GT-SUITE. www.gtisoft.com (2017). Accessed 12 July 2019
  13. 13.
    Gao, Z., Conklin, J., Daw, C., Chakravarthy, V.: A proposed methodology for estimating transient engine-out temperature and emissions from steady-state maps. Int. J. Engine Res. 11(2), 137–151 (2010)CrossRefGoogle Scholar
  14. 14.
    Ghojel, J.: Review of the development and applications of the Wiebe function: a tribute to the contribution of Ivan Wiebe to engine research. Int. J. Engine Res. 11(4), 297–312 (2010)CrossRefGoogle Scholar
  15. 15.
    Grasreiner, S., Neumann, J., Luttermann, C., Wensing, M., Hasse, C.: A quasi-dimensional model of turbulence and global charge motion for spark ignition engines with fully variable valvetrains. Int. J. Engine Res. 15(7), 805–816 (2014)CrossRefGoogle Scholar
  16. 16.
    Grasreiner, S., Neumann, J., Wensing, M., Hasse, C.: A quasi-dimensional model of the ignition delay for combustion modeling in SI engines. J. Eng. Gas Turbine Power 137(7), 071502 (2015)CrossRefGoogle Scholar
  17. 17.
    Grasreiner, S., Neumann, J., Wensing, M., Hasse, C.: Model-based virtual engine calibration with the help of phenomenological methods for spark-ignited engines. Appl. Therm. Eng. 121, 190–199 (2017)CrossRefGoogle Scholar
  18. 18.
    Grill, M., Billinger, T., Bargende, M.: Quasi-dimensional modeling of spark ignition engine combustion with variable valve train. SAE Technical Paper 2006-01-1107 (2006)Google Scholar
  19. 19.
    Guerrier, M., Cawsey, P.: The development of model based methodologies for gasoline IC engine calibration. SAE Technical Paper 2004-01-1466 (2004)Google Scholar
  20. 20.
    Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)Google Scholar
  21. 21.
    Huang, Z., Pan, K., Li, J., Zhou, L., Jiang, D.: An investigation on simulation models and reduction methods of unburned hydrocarbon emissions in spark ignition engines. Combust. Sci. Technol. 115(1–3), 105–123 (1996)CrossRefGoogle Scholar
  22. 22.
    Irimescu, A., Di Iorio, S., Merola, S.S., Sementa, P., Vaglieco, B.M.: Correlation between simulated volume fraction burned using a quasi-dimensional model and flame area measured in an optically accessible SI engine. SAE Technical Paper 2017-01-0545 (2017)Google Scholar
  23. 23.
    Isermann, R. (ed.): Engine Modeling and Control. Springer, Berlin (2014)Google Scholar
  24. 24.
    Kratzsch, M., Günther, M., Elsner, N., Zwahr, S.: Modellansätze für die virtuelle Applikation von Motorsteuergeräten. MTZ-Motortechnische Zeitschrift 70(9), 664–670 (2009)CrossRefGoogle Scholar
  25. 25.
    Lämmle, C.: Numerical and Experimental Study of Flame Propagation and Knock in a Compressed Natural Gas Engine. PhD thesis, ETH Zürich, Switzerland (2005)Google Scholar
  26. 26.
    Mencher, B., Jessen, H., Kaiser, L., Gerhardt, J.: Preparing for CARTRONIC—interface and new strategies for torque coordination and conversion in a spark ignition engine-management system. SAE Technical Paper 2001-01-0268 (2001)Google Scholar
  27. 27.
    Merker, G.P., Schwarz, C., Stiesch, G., Otto, F.: Simulating Combustion—Simulation of Combustion and Pollutant Formation for Engine-Development. Springer, Berlin (2006)Google Scholar
  28. 28.
    Metghalchi, M., Keck, J.C.: Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combust. Flame 48, 191–210 (1982)CrossRefGoogle Scholar
  29. 29.
    Millo, F., Lorenzo, G.D., Servetto, E., Capra, A., Pettiti, M.: Analysis of the performance of a turbocharged S.I. engine under transient operating conditions by means of fast running models. SAE Technical Paper 2013-01-1115 (2013)Google Scholar
  30. 30.
    Mitts, K.J., Lang, K., Roudier, T., Kiskis, D.L.: Using a co-simulation framework to enable software-in-the-loop powertrain system development. SAE Technical Paper 2009-01-0520 (2009)Google Scholar
  31. 31.
    Morel, T., Rackmil, C.I., Keribar, R., Jennings, M.J.: Model for heat transfer and combustion in spark ignited engines and its comparison with experiments. SAE Technical Paper 880198 (1988)Google Scholar
  32. 32.
    Nefischer, A., Neumann, J., Stanciu, A., Wimmer, A.: Quasi-dimensional modeling of turbulence-driven phenomena in SI engines. Int. J. Veh. Des. 66(3), 297–316 (2014)CrossRefGoogle Scholar
  33. 33.
    Nijs, M., Sternberg, P., Wittler, M., Pischinger, S.: Steuergerätefähige Luftpfadmodelle für Ottomotoren mit erweiterter Ventiltriebsvariabilität. MTZ-Motortechnische Zeitschrift 71(11), 824–831 (2010)CrossRefGoogle Scholar
  34. 34.
    Pagerit, S., Roudier, T., Sharer, P., Rousseau, A.: Complex system engineering simulation through co-simulation. SAE Technical Paper 2014-01-1106 (2014)Google Scholar
  35. 35.
    Santavicca, D.A., Liou, D., North, G.L.: A fractal model of turbulent flame kernel growth. SAE Technical Paper 900024 (1990)Google Scholar
  36. 36.
    Tabaczynski, R.J., Ferguson, C.R., Radhakrishnan, K.: A turbulent entrainment model for spark-ignition engine combustion. SAE Technical Paper 770647 (1977)Google Scholar
  37. 37.
    The MathWorks Inc. MATLAB. https://www.mathworks.com (2017). Accessed 12 July 2019
  38. 38.
    Trapp, C.: Simulation in der Motorentwicklung—Auf dem Weg zur virtuellen Applikation. MTZ-Motortechnische Zeitschrift 69(11), 922–927 (2008)CrossRefGoogle Scholar
  39. 39.
    Vibe, J.I.: Brennverlauf und Kreisprozess von Verbrennungsmotoren. VEB Verlag Technik, Berlin (1970)Google Scholar
  40. 40.
    Wang, S., Prucka, R., Zhu, Q., Prucka, M., Dourra, H.: A real-time model for spark ignition engine combustion phasing prediction. SAE Int. J. Engines 9(2), 1180–1190 (2016)CrossRefGoogle Scholar
  41. 41.
    Woschni, G.: A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Technical Paper 670931 (1967)Google Scholar
  42. 42.
    Wurzenberger, J., Bartsch, P., Katrasnik, T.: Crank-angle resolved real-time capable engine and vehicle simulation—fuel consumption and driving performance. SAE Technical Paper 2010-01-0784 (2010)Google Scholar
  43. 43.
    Xiao, B., Wang, S., Prucka, R.: Virtual combustion phasing target correction in the knock region for model-based control of multi-fuel SI engines. SAE Int. J. Engines 6(1), 228–236 (2013)CrossRefGoogle Scholar
  44. 44.
    Zschutschke, A., Neumann, J., Linse, D., Hasse, C.: A systematic study on the applicability and limits of detailed chemistry based NOx models for simulations of the entire engine operating map of spark-ignition engines. Appl. Therm. Eng. 98, 910–923 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Development Powertrain, BMW GroupMunichGermany
  2. 2.Chair for Simulation of Reactive Thermo-Fluid SystemsTechnical University DarmstadtDarmstadtGermany

Personalised recommendations