Advertisement

Automotive and Engine Technology

, Volume 4, Issue 3–4, pp 139–151 | Cite as

Active torsional vibration reduction: potential analysis and controller development for a belt-driven 48 V system

  • Raja Sangili VadamaluEmail author
  • Christian Beidl
  • Guenter Hohenberg
  • Klaus Muehlbauer
Original Paper
  • 29 Downloads

Abstract

Modern internal combustion engines (ICE) reach higher peak pressure thanks to the improved thermodynamic processes and charging technologies. Passive vibration damping approaches face challenges motivating the application of active methods. Active torsional vibration reduction achieves reduced torsional oscillations using the compensation torque generated by an electric traction machine (ETM). 48 V-based hybridization is gaining increased attention as an intermediate step towards higher levels of powertrain electrification. This trend opens new challenges for active vibration reduction with non-inline integration of the ETM using belt drive systems. We analyze the available potential for active torsional vibration attenuation in such belt drive systems in combination with a 48 V belt-driven starter generator (BSG). The study shows that a dual-mass flywheel (DMF) with a centrifugal pendulum absorber can be replaced by a simplified DMF with active vibration reduction using the 48 V BSG system. The effectiveness of active vibration reduction depends on the control functionality. In this contribution, we present an adaptive controller which does not require sensors for reference signal measurement. Besides simulative analysis, the performance of the proposed controller is demonstrated on the experimental test setup with a 2-cylinder ICE and an ETM in an inline configuration.

Keywords

Active torsional vibration reduction Belt-driven 48 V system Potential analysis Adaptive controller 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    “ISO/TC 108/SC 4 Human exposure to mechanical vibration and shock”. In: ISO 2631-1:1997/Amd 1:2010 - Mechanical vibration and shock—Evaluation of human exposure to whole-body vibration—part 1: General requirements AMENDMENT 1 (2010)Google Scholar
  2. 2.
    Faust, H.: Powertrain systems of the future. In: Schaeffler (ed.) Solving the Powertrain Puzzle 10th Schaeffler Symposium (2014).  https://doi.org/10.1007/978-3-658-06430-3 Google Scholar
  3. 3.
    Dilzer, M., Reitz, D., Ruder, W., Wagner, U.: One idea, many applications further development of the Schaeffler hybrid module. In: 10th Schaeffler Symposium (2014)Google Scholar
  4. 4.
    Wagner, U., Reitz, D.: The future comes automatic: Efficient automatic transmissions provide a basis for hybrid capable drive trains. In: 9th Schaeffler Symposium (2010)Google Scholar
  5. 5.
    Wagner, U., Rauch, M., Eckl, T., Schamel, A., Weber, C., Springer, M., Maiwald, O., Knorr, T., Lauer, S.: 48 V P2 hybrid vehicle with an optimized engine concept—optimum drivability with excellent fuel economy and cost-efficiency. In: 37. Internationales Wiener Motorensymposium (2016)Google Scholar
  6. 6.
    Vollrath, O., Banken, J., Lautenschuetz, P., Storz, O., Lehmann, H., Hergemoeller, T.: Der neue 6-Zylinder-Otto-Reihenmotor von Mercedes Benz–Stark in allen Disziplinen. In: Der Verbren-nungsmotor ein Antrieb mit Vergangenheit und Zukunft (2018)Google Scholar
  7. 7.
    Stuffer, A., Heinrich, D. Hauck, C., Schmidt, T., Stief, H.: Introduction of 48 V belt drive system: New tensioner and decoupler solutions for belt driven mild hybrid systems. In: 10th Schaeffler Symposium (2010).  https://doi.org/10.1007/978-3-658-06430-3 Google Scholar
  8. 8.
    Vadamalu, R.S.: Estimation and control methods for active reduction of engine-induced torsional vibration in hybrid powertrains. Dissertation, Institut fuer Verbrennungskraftmaschinen und Fahrzeugantriebe. TU Darmstadt (2018)Google Scholar
  9. 9.
    Buch, D.: Aktive Beruhigung verbrennungsmo-torisch erregter Drehschwingungen im hybriden Fahrzeugantriebsstrang. Dissertation, Institut fuer Verbrennungskraftmaschinen und Fahrzeugantriebe. TU Darmstadt (2016)Google Scholar
  10. 10.
    Kuo, S.M., Morgan. D.R.: Active noise control: a tutorial review. In: Proceedings of the IEEE 87.6, pp. 943–973 (1999).  https://doi.org/10.1109/5.763310 (ISSN: 0018-9219)CrossRefGoogle Scholar
  11. 11.
    Wu, L., Qiu, X., Guo, Y.: A simplified adap-tive feedback active noise control system. In: Applied Acoustics, vol. 81, pp. 40–46 (2014).  https://doi.org/10.1016/j.apacoust.2014.02.006 (ISSN: 0003-682X)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Internal Combustion Engines and Powertrain SystemsTU DarmstadtDarmstadtGermany
  2. 2.IVD Deutschland GmbHDarmstadtGermany
  3. 3.Continental RegensburgRegensburgGermany

Personalised recommendations