Control allocation for all wheel drive sports cars with rear wheel steering

  • Yannik PetersEmail author
  • Matthias Stadelmayer
Original Paper


The increasing demands for driving comfort and driving dynamics lead to the introduction of a variety of control systems in modern vehicles. So far, these systems are working in peaceful coexistence and do not use potential synergies. This paper presents a modular control allocation, which combines lateral torque distribution at the rear axle, longitudinal torque distribution, and rear wheel steering. The previous investigations of torque vectoring mostly neglected the secondary yaw torque, which is a result of the dependency between lateral and longitudinal forces at the tyres. An increase in longitudinal forces leads to a decrease in lateral forces and, therefore, results in a yaw torque. A comprehensive vehicle and tyre model is used to analyze this secondary effect for different vehicle states and requested yaw torque. The investigation shows that the influence of the secondary yaw torque varies heavily depending on the vehicle state and the requested yaw torque. Especially, for stabilizing torque requests at high lateral acceleration, the secondary effect is significant and should not be neglected. The investigation shows that an optimal distribution for each yaw torque request exists and that results in maximum lateral forces and thereby maximum lateral acceleration. These results are used within the paper’s modular control allocation. A model-based reference generator delivers desirable yaw rates and side slip angles, which are transferred into necessary lateral forces at the wheels by the control allocation unit. This force-based approach enables modular expandability and usability across multiple vehicles. The proposed controller shows that using the available systems in conjunction helps to increase driving performance and the vehicles stability at the same time.


Control allocation Lateral dynamics controller Automotive Vehicle dynamics Secondary yaw torque Rear wheel steering 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Laumanns, N: Integrale Reglerstruktur zur effektiven Abstimmung von Fahrdynamikregelsystemen, Ph.D. dissertation, Automobiltechnik, Institut für Kraftfahrwesen, Aachen, Oct. 2007, ISBN: 978-3-925194-90-0Google Scholar
  2. 2.
    Bargende, M., Reuss, H-C., Wiedemann, J: 14. Internationales Stuttgarter Symposium: Automobil- und Motorentechnik. Springer, Berlin (2014). ISBN 978-3-658-05130-3Google Scholar
  3. 3.
    Yu, F., Li, D.-F., Crolla, D.A.: Integrated vehicle dynamics control—state-of-the art review. In: 2008 IEEE vehicle power and propulsion conference, Harbin, 2008, pp. 1–6.
  4. 4.
    Pfeffer, P., Harrer, M.: Lenkungshandbuch. Wiesbaden: Vieweg + Teubner Verlag (2011). -ISBN 978-3-834-88167-0Google Scholar
  5. 5.
    Piyabongkarn, D., Rajamani, R., Lew, J.Y., Yu, H.: On the use of torque-biasing devices for vehicle stability control. In: Proceedings of American Control Conference (ACC), Minneapolis, MN (2006), pp. 5360–5365Google Scholar
  6. 6.
    Meißner, T.C.: Verbesserung der Fahrzeugquerdynamik durch variable Antriebsmomentverteilung, Ph.D. dissertation, Göttingen: Cuvillier Verlag, 2008, ISBN: 978-3-86727-602-3Google Scholar
  7. 7.
    Fuhr, F., Hofbauer, M., Widemann, L., Porsche Torque Vectoring - Optimierung von Fahrzeugagilität und Traktion. In: 19. Aachener Kolloquium: Fahrzeug- und Motorentechnik (2010)Google Scholar
  8. 8.
    Hillenbrand, S., Stolpe, I.: Optimierung der Reibwert-ausnutzung der Reifen durch aktive Antriebs-momentenverteilung. In: at-Automatisierungstechnik Methoden und Anwendungen der Steuerungs-, Regelungs-und Informationstechnik 57 (2009), Nr. 5, S. 223–229Google Scholar
  9. 9.
    De Novellis, L., Sorniotti, A., Gruber, P.: Wheel torque distribution criteria for electric vehicles with torque-vectoring differentials. Trans. Veh Technol 63(4), 1593–1602 (2014). CrossRefGoogle Scholar
  10. 10.
    Xiao, F.: Optimal torque distribution for four-wheel-motored electric vehicle stability enhancement. In: 2015 IEEE International Transportation Electrification Conference (ITEC), Chennai, pp. 1-9 (2015).
  11. 11.
    Struijk, M: Central Differential Control of An Active Four Wheel Drive Vehicle. Masterarbeit, Delft Center for Systems and Control, TU Delft, (2015)Google Scholar
  12. 12.
    Bodson, M.: Evaluation of optimization methods for control allocation. J. Guid. Control Dyn. 25(4), 703–711 (2002)CrossRefGoogle Scholar
  13. 13.
    Bordignon, K.A., Durham, W.C.: Closed-form solutions to constrained control allocation problem. J. Guid. Control Dyn. 18(5), 1000–1007 (1995)CrossRefGoogle Scholar
  14. 14.
    Antonelli, G., Chiaverini, S.: (1998) Task-priority redundancy resolution for underwater vehicle-manipulator systems. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, pp. 768–773Google Scholar
  15. 15.
    Manual, MF-Tyre U.: MF-Tyre User Manual Version 5.2. DELFT-TYRE, TNO, 2002Google Scholar
  16. 16.
    Bhoraskar, A., Sakthivel, P.: A review and a comparison of Dugoff and modified Dugoff formula with magic formula. In: 2017 International Conference on Nascent Technologies in the Engineering Field (ICNTE-2017), (2017).
  17. 17.
    Levinson, J. et al.: Towards fully autonomous driving: systems and algorithms. In: 2011 IEEE intelligent vehicles symposium (IV), Baden-Baden (2011)Google Scholar
  18. 18.
    V. Berkefeld „Theoretische Untersuchungen zur Vierradlenkung, Stabilität und Manövrierbarkeit“. HDT Conference T-30-930-056-9, 1989, [Online].
  19. 19.
    Gnadler, R.: “Fahreigenschaften von Kraftfahrzeugen II“, Scriptum, FAST-Institute, KIT, Karlsruhe, Germany, (2016)Google Scholar
  20. 20.
    Hsiao, T., Liu, N.C., Chen, S.Y.: Robust estimation of the friction forces generated by each tyre of a vehicle. In: Proceedings of the 2011 American Control Conference, San Francisco, CA (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dr. Ing. h.c. F. Porsche AGWeissachGermany

Personalised recommendations