Advertisement

Derivation of scaled design premises for future vehicle concepts based on a forecast of travel demand using the example of a commercial fully automated on-demand fleet

  • Peter Lukas PetersEmail author
  • Lars Kröger
  • Rainer Demuth
  • Dieter Schramm
Original Paper
  • 18 Downloads

Abstract

This paper presents an approach for linking the vehicle concept design in the early phase of development with findings from the forecast of mobility behavior under the boundary conditions of a future scenario for Germany. The focus is on an objective and data-based methodology for the derivation of design premises for vehicle concepts, illustrated by using the example of a commercial fully automated on-demand fleet. Today, vehicle concepts are designed on the basis of technical premises derived from the customer requirements of the relevant target group determined by market research and the competitive comparison. Technological trends (e.g., fully automated driving) and business model innovations (e.g., mobility as a service) have the potential to change the individual mobility behavior of users significantly so that today’s vehicle concepts will no longer meet the future requirements. Thus, the conventional approach of determining design premises for vehicle concepts alone may no longer be appropriate. Therefore, as the starting point of the overall methodology, the future mobility behavior is simulated in an aspatial travel demand model. By converting the simulated mobility behavior into relevant design premises and using a cluster analysis adapted for the specific application case, total vehicle concepts are objectively derived and optimized regarding the coverage of mobility needs. The concepts are scaled taking technical concept leaps into account. This application example shows that almost 85% of urban autonomous car sharing trips can be covered using a vehicle concept with significantly reduced requirements. Based on the scaled vehicle portfolio and the respective relevance of covering mobility needs, a recommendation for an efficient fleet design can be made.

Keywords

Fully automated driving Future vehicle concepts On-demand mobility Derivation of design premises Modelling travel demand Future mobility behavior 

Notes

References

  1. 1.
    Albers, S., Klapper, D., Konradt, U., Walter, A., Wolf, J.: Methodik der empirischen Forschung, 3rd edn. Gabler Verlag, Wiesbaden (2009)CrossRefGoogle Scholar
  2. 2.
    Axhausen K.W., Ehreke I., Glemser A., Hess S., Jödden C., Nagel K.: Ermittlung von Bewertungsansätzen für Reisezeiten und Zuverlässigkeit auf der Basis eines Modells für modale Verlagerungen im nicht-gewerblichen und gewerblichen Personenverkehr für die Bundesverkehrswegeplanung: Schlussbericht: FE-Projekt-Nr. 96.996/2011. (2015) https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/89615/ab1028.pdf?sequence=1&isAllowed=y. Accessed 28 Nov 2016
  3. 3.
    Backhaus, K., Erichson, B., Plinke, W.: Multivariate Analysemethoden: eine anwendungsorientierte einführung, 15th edn. Springer Berlin Heidelberg, Berlin Heidelberg (2018)CrossRefzbMATHGoogle Scholar
  4. 4.
    Becker T., Herrmann F., Duwe D., Stegmüller S., Röckle F., Unger N.: Enabling the value of time: implikationen für die Innenraumgestaltung autonomer Fahrzeuge. Fraunhofer- Institut für Arbeitswirtschaft und Organisation IAO, Horváth & Partners. (2018) http://www.muse.iao.fraunhofer.de/content/dam/iao/muse/en/documents/VoT-Studienbericht.pdf. Accessed 25 June 2018
  5. 5.
    BMVI. (2018) Mobilität in deutschland 2017—kurzreport. Bundesministerium für Verkehr und digitale Infrastruktur. http://www.mobilitaet-in-deutschland.de/pdf/infas_Mobilitaet_in_Deutschland_2017_Kurzreport_DS.pdf. Accessed 9 Oct 2018
  6. 6.
    Bösch, P.M., Becker, F., Becker, H., Axhausen, K.W.: Cost-based analysis of autonomous mobility services. Transp. Policy 64, 76–91 (2018).  https://doi.org/10.1016/j.tranpol.2017.09.005 CrossRefGoogle Scholar
  7. 7.
    Childress, S., Nichols, B., Charlton, B., Coe, S.: Using an activity-based model to explore the potential impacts of automated vehicles. Transp. Res. Rec. 2493, 99–106 (2015).  https://doi.org/10.3141/2493-11 CrossRefGoogle Scholar
  8. 8.
    Cyganski, R.: Autonome fahrzeuge und autonomes fahren aus sicht der nachfragemodellierung. In: Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.) Autonomes Fahren, pp. 241–263. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Deming, W.E., Stephan, F.F.: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Statist. 11, 427–444 (1940).  https://doi.org/10.1214/aoms/1177731829 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    DESTATIS. Bevölkerung deutschlands bis 2060—begleitheft zur pressekonferenz am 18. November 2009. Statistisches Bundesamt. https://www.destatis.de/DE/Publikationen/Thematisch/Bevoelkerung/VorausberechnungBevoelkerung/BevoelkerungDeutschland2060Presse5124204099004.pdf?__blob=publicationFile. (2009) Accessed 3 April 2018
  11. 11.
    Dungs, J., Herrmann, F., Duwe, D., Schmidt, A., Stegmüller, S., Gaydoul, R., Peters, P.L., Sohl, M.: The value of time: nutzerbezogene service-potenziale durch autonomes Fahren. Fraunhofer- Institut für Arbeitswirtschaft und Organisation IAO, Horváth & Partners. https://blog.iao.fraunhofer.de/images/blog/studie-value_of_time.pdf. (2016) Accessed 25 June 2018
  12. 12.
    Fagnant, D., Kockelman, K.: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. Part A 77, 167–181 (2015).  https://doi.org/10.1016/j.tra.2015.04.003 Google Scholar
  13. 13.
    Fagnant, D.J., Kockelman, K.M.: Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin. Texas. Transp. 45, 1450 (2016).  https://doi.org/10.1007/s11116-016-9729-z Google Scholar
  14. 14.
    Follmer, R., Gruschwitz, D., Jesske, B., Quandt, S., Lenz, B., Nobis, C., Köhler, K., Mehlin, M.: Mobilität in Deutschland 2008: ergebnisbericht: struktur—aufkommen—emissionen—trends. Bundesministeriums für Verkehr, Bau und Stadtentwicklung. http://www.mobilitaet-in-deutschland.de/pdf/MiD2008_Abschlussbericht_I.pdf. (2010) Accessed 3 Oct 2018
  15. 15.
    Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics 27, 857 (1971).  https://doi.org/10.2307/2528823 CrossRefGoogle Scholar
  16. 16.
    Handl, A., Kuhlenkasper, T.: Multivariate analysemethoden: theorie und praxis mit R, 3rd edn. Springer Spektrum, Berlin, Heidelberg (2017)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hess, S., Daly, A.: Handbook of choice modelling. Edward Elgar Publishing, Incorporated, Cheltenham (2014)CrossRefGoogle Scholar
  18. 18.
    Kampker, A., Gerdes, J., Schuh, G.: Die streetscooter-mobilitätslösung. In: Kampker, A., Gerdes, J., Schuh, G. (eds.) Think Big, Start Small: StreetScooter die e-Mobile Erfolgsstory: Innovationsprozesse Radikal Effizienter, pp. 201–210. Springer Berlin Heidelberg, Berlin, Heidelberg (2017)Google Scholar
  19. 19.
    Kröger, L., Kuhnimhof, T., Trommer, S.: Modelling the impact of automated driving. Private AV scenarios for Germany and the US. Presented to the European transport conference. German aerospace center, Berlin. https://elib.dlr.de/110333/1/ETC_2016_Kroeger_Kuhnimhof_Trommer_Modelling_AV_Paper.pdf. (2016) Accessed 28 Nov 2016
  20. 20.
    Kröger, L., Kuhnimhof, T., Trommer, S.: Does context matter? A comparative study modelling autonomous vehicle impact on travel behaviour for Germany and the USA. Transportation research part A: policy and practice. 2018)  https://doi.org/10.1016/j.tra.2018.03.033
  21. 21.
    Lindemann, U., Maurer, M., Braun, T.: Structural complexity management: an approach for the field of product design. Springer, Berlin, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Litman, T.: Autonomous vehicle implementation predictions: implications for transport planning. Victoria transport policy institute. https://www.vtpi.org/avip.pdf. (2018) Accessed 9 Oct 2018
  23. 23.
    Maier, G., Weiss, P: Modelle diskreter entscheidungen: theorie und anwendung in den sozial- und wirtschaftswissenschaften. Springer, Wien u.a (1990)Google Scholar
  24. 24.
    Matz, S.: Nutzerorientierte fahrzeugkonzeptoptimierung in einer multimodalen Verkehrsumgebung. Dissertation, Technische Universität München (2015)Google Scholar
  25. 25.
    Meyer, J., Becker, H., Bösch, P.M., Axhausen, K.W.: Autonomous vehicles: the next jump in accessibilities? Res. Transp. Econ. 62, 80–91 (2017).  https://doi.org/10.1016/j.retrec.2017.03.005 CrossRefGoogle Scholar
  26. 26.
    NPE. Zweiter bericht der nationalen plattform elektromobilität. Gemeinsame geschäftsstelle elektromobilität der bundesregierung. Nationale plattform elektromobilität. http://nationale-plattform-elektromobilitaet.de/fileadmin/user_upload/Redaktion/zweiter_bericht_nationale_plattform_elektromobilitaet.pdf. (2011) Accessed 11 April 2018
  27. 27.
    Ortúzar, J.d.D, Willumsen, L.G.: Modelling Transport, 4th edn. Wiley, Chichester u.a. (2011)CrossRefGoogle Scholar
  28. 28.
    Pavone, M.: Autonomous Mobility-on-Demand Systems for Future Urban Mobility. In: Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.) Autonomes Fahren, pp. 399–416. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)CrossRefGoogle Scholar
  29. 29.
    Pearre, N.S., Kempton, W., Guensler, R.L., Elango, V.V.: Electric vehicles: how much range is required for a day’s driving? Transp Res. Part C 19, 1171–1184 (2011).  https://doi.org/10.1016/j.trc.2010.12.010 CrossRefGoogle Scholar
  30. 30.
    Pfriem, M. Analyse der Realnutzung von Elektrofahrzeugen in kommerziellen flotten zur definition einer bedarfsgerechten Fahrzeugauslegung. Dissertation. Karlsruher Institut für Technologie (KIT) (2016)Google Scholar
  31. 31.
    Phleps, P., Feige, I., Zapp, K. Die Zukunft der Mobilität: Szenarien für Deutschland in 2035. Institut für Mobilitätsforschung (ifmo). https://www.ifmo.de/files/publications_content/2015/ifmo_2015_Zukunft_Mobilitaet_2035_Zusammenfassung_de.pdf. (2015) Accessed 13 April 2018
  32. 32.
    Podani, J.: Extending gower’s general coefficient of similarity to ordinal characters. Taxon 48, 331 (1999).  https://doi.org/10.2307/1224438 CrossRefGoogle Scholar
  33. 33.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2018) Accessed 17 Dec 2018
  34. 34.
    Redelbach, M., Özdemir, E.D., Friedrich, H.E.: Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types. Energy Policy 73, 158–168 (2014).  https://doi.org/10.1016/j.enpol.2014.05.052 CrossRefGoogle Scholar
  35. 35.
    Reiser, C., Zellbeck, H., Härtle, C., Klaiß, T.: Kundenfahrverhalten im Fokus der Fahrzeugentwicklung. ATZ—Automobiltechnische Zeitschrift 110, 684–692 (2008).  https://doi.org/10.1007/BF03222003 CrossRefGoogle Scholar
  36. 36.
    Schoettle, B., Sivak, M. Potential impact of self-driving vehicles on household vehicle demand and usage. The University of Michigan Transportation Research Institute (UMTRI). https://deepblue.lib.umich.edu/bitstream/handle/2027.42/110789/103157.pdf. (2015) Accessed 9 Jan 2017
  37. 37.
    Sheehan, R., Tomg, G.-W.: Mobility on demand (MOD). “Transform the Way society moves”. U.S. Department of Transportation. https://www.its.dot.gov/factsheets/pdf/MobilityonDemand.pdf. (2016) Accessed 9 Oct 2018
  38. 38.
    Stein, P., Vollnhals, S.: Grundlagen clusteranalytischer Verfahren. Institut für Soziologie—Universität Duisburg-Essen. https://www.uni-due.de/imperia/md/content/soziologie/stein/skript_clusteranalyse_sose2011.pdf. (2011) Accessed 9 May 2018
  39. 39.
    Tesch. F.: Bewertung der strukturvariabilität von Pkw-Karosseriederivaten. Dissertation, Technische Universität München (2010)Google Scholar
  40. 40.
    Train, K.E.: A comparison of the predictive ability of mode choice models with various levels of complexity. Transp. Res. Part A 13, 11–16 (1979).  https://doi.org/10.1016/0191-2607(79)90082-7 CrossRefGoogle Scholar
  41. 41.
    Trommer, S., Kolarova, V., Fraedrich, E., Kröger, L., Kickhöfer, B., Kuhnimhof, T., Lenz, B., Phleps, P.: Autonomous driving: the impact of vehicle automation on mobility behaviour. ifmo—Institute for Mobility Research. http://www.ifmo.de/tl_files/publications_content/2016/ifmo_2016_Autonomous_Driving_2035_en.pdf. (2016) Accessed 9 Jan 2017
  42. 42.
    VDA. Automation: from driver assistance systems to automated driving. Verband der Automobilindustrie e. V. (VDA). https://www.vda.de/dam/vda/publications/2015/automation.pdf. (2015) Accessed 17 Dec 2018
  43. 43.
    Weiß, C., Chlond, B., Heilig, M., Vortisch, P.: Capturing the usage of the german car fleet for a 1 Year period to evaluate the suitability of battery electric vehicles—a model based approach. Transp. Res. Procedia 1, 133–141 (2014).  https://doi.org/10.1016/j.trpro.2014.07.014 CrossRefGoogle Scholar
  44. 44.
    Weiß, C., Chlond, B., Hilgert, T., Vortisch, P.: Deutsches mobilitätspanel (MOP)—Wissenschaftliche begleitung und auswertungen: bericht 2015/2016: alltagsmobilität. bundesministerium für verkehr und digitale infrastruktur. https://www.bmvi.de/SharedDocs/DE/Anlage/VerkehrUndMobilitaet/mop-jahresbericht-2015-2016.pdf?__blob=publicationFile. (2016) Accessed 12 Feb 2018
  45. 45.
    Williams, H.C.W.L.: On the formation of travel demand models and economic evaluation measures of user benefit. Environ. Plan A 9, 285–344 (1977).  https://doi.org/10.1068/a090285 CrossRefGoogle Scholar
  46. 46.
    Wördenweber, M: Clusteranalysen bei gemischtskalierten Datensätzen: Unter bes. Berücks. d. Gewichtung von Variablen u. Variablengruppen. Dissertation, Westfälische Wilhelms-Universität Münster (1985)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BMW Group - Total Vehicle DevelopmentMunichGermany
  2. 2.German Aerospace Center (DLR)Institute of Transport ResearchBerlinGermany
  3. 3.Department Chair MechatronicsUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations