Automotive and Engine Technology

, Volume 3, Issue 3–4, pp 159–167 | Cite as

Real-time capable solution for optimal control problems: a heterogeneous hardware approach

  • Janek HudecekEmail author
  • Lutz Eckstein
Original Paper


Optimization is a widespread tooling with diverse applications in nearly each technical discipline. Its task is to find a control function that minimizes a performance index while meeting boundary as well as continuous constraints. Different approaches exist to solve corresponding problems. This paper briefly summarizes the most important ones and based on that presents an improvement that reduces the transcribed problem’s dimensionality. Apart from that, implementation details are given, enabling the real-time capable solution of the resulting optimization problem. The generic approach is finally applied to a real-world problem, i.e., the planning of a reference trajectory of a front-steered vehicle. Closing, simulation results as well as achieved runtimes are presented.


Real-time optimal control Trajectory generation Heterogeneous computing 



  1. 1.
    Barkow, A., Küfen, J., Hudecek, J., Christen, F.: Positionierungssystem für induktives Laden. ATZ 117(07–08), 46–50 (2015)Google Scholar
  2. 2.
    Betts, J.: Survey of numerical methods for trajectory optimization. J. Guidance Control Dyn. 21(2), 193–207 (1998)CrossRefGoogle Scholar
  3. 3.
    Betts, J.: Practical Methods for Optimal Control Using Nonlinear Programming. Advances in design and control. Society for Industrial and Applied Mathematics, Philadelphia (2010)Google Scholar
  4. 4.
    Blackwell, D.: Discrete dynamic programming. Ann. Math. Stat. 33(2), 719–726 (1962)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Developer, N.: CUDA Suggested Reading (2015).
  6. 6.
    Fike., J.A., Jongsma, S., Alonso, J.J., van der Weide, E.: Optimization with gradient and hessian information calculated using hyper-dual numbers. In: 29th AIAA applied aerodynamics conference, Honolulu, Hawaii, AIAA paper 2011-3807, 27–30 June 2011Google Scholar
  7. 7.
    Forsberg, J., Nilsson, L.: Topology optimization in crashworthiness design. Struct. Multidiscip. Optim. 33(01), 1–12 (2006)CrossRefGoogle Scholar
  8. 8.
    Gu, T., Snider, J., Dolan, J., Lee, J.: Focused trajectory planning for autonomous on-road driving. In: IEEE intelligent vehicles symposium (IV), pp. 547–552 (2013)Google Scholar
  9. 9.
    Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  10. 10.
    Hudecek, J., Eckstein, L.: Ein hybrider Ansatz zur Realisierung echtzeitfähiger Optimalsteuerungen im Kraftfahrzeug. In: AAET Braunschweig (2015)Google Scholar
  11. 11.
    Hudecek, J., Eckstein, L.: GPU Based Tactical Motion Planning Das Fundament für hochintegrierte Fahrerassistenz. In: Elektronik im Fahrzeug-Die neue Welt der Automobilindustrie (2015)Google Scholar
  12. 12.
    Lai, K.: Generalizations of the complex-step derivative approximation. Department of Mechanical & Aerospace Engineering (2006)Google Scholar
  13. 13.
    Nvidia: CUDA Programming Guide—version 7.0 (2015).
  14. 14.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The mathematical theory of optimal processes. Wiley, New York (1965)Google Scholar
  15. 15.
    Rall, L.: Automatic differentiation: techniques and applications. In: Lecture Notes in Computer Science, vol. 120. Springer Verlag, New York (1981)Google Scholar
  16. 16.
    Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135(1), 497–528 (2005)MathSciNetGoogle Scholar
  17. 17.
    Schwesinger, U., Rufli, M., Furgale, P., Siegwart, R.: A sampling-based partial motion planning framework for system-compliant navigation along a reference path. In: IEEE intelligent vehicles symposium, pp. 391–396 (2013)Google Scholar
  18. 18.
    Sundström, O.: Optimal Control and Design of Hybrid-Electric Vehicles. ETH, Zurich (2009)Google Scholar
  19. 19.
    Todorov, E.: Optimal control theory. In: Bayesian brain, pp. 269–298. MIT Press, New York (2006)Google Scholar
  20. 20.
    Tøndel, P., Johansen, T.A.: Control allocation for yaw stabilization in automotive vehicles using multiparametric nonlinear programming. In: American control conference, 2005. Proceedings of the 2005, pp. 453–458 (2005)Google Scholar
  21. 21.
  22. 22.
    Waschl, H., Kolmanovsky, I., Steinbuch, M., del Re, L.: Optimization and Optimal Control in Automotive Systems, Lecture Notes in Control and Information Sciences. Springer Verlag, New York (2014)CrossRefGoogle Scholar
  23. 23.
    Werling, M., Kammel, S., Ziegler, J., Gröll, L.: Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. I. J. Robot. Res. 31(3), 346–359 (2012)CrossRefGoogle Scholar
  24. 24.
    Wilt, N.: The CUDA Handbook—A Comprehensive Guide to GPU Programming. Addison-Wesley, New York (2013)Google Scholar
  25. 25.
    Ziegler, J., Bender, P., Dang, T., Stiller, C.: Trajectory planning for bertha—A local, continuous method. In: IEEE intelligent vehicles symposium, pp. 450–457 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.FLAAachenGermany

Personalised recommendations