Advertisement

Analyzing the Supply and Detecting Spatial Patterns of Urban Green Spaces via Optimization

  • Johannes OehrleinEmail author
  • Benjamin Niedermann
  • Jan-Henrik Haunert
Original Article
  • 115 Downloads

Abstract

Green spaces in urban areas offer great possibilities of recreation, provided that they are easily accessible. Therefore, an ideal city should offer large green spaces close to where its residents live. Although there are several measures for the assessment of urban green spaces, the existing measures usually focus either on the total size of all green spaces or on their accessibility. Hence, in this paper, we present a new methodology for assessing green-space provision and accessibility in an integrated way. The core of our methodology is an algorithm based on linear programming that computes an optimal assignment between residential areas and green spaces. In a basic setting, it assigns green spaces of a prescribed size exclusively to each resident, such that an objective function that, in particular, considers the average distance between residents and assigned green spaces is optimized. We contribute a detailed presentation on how to engineer an assignment-based method, such that it yields plausible results (e.g., by considering distances in the road network) and becomes efficient enough for the analysis of large metropolitan areas (e.g., we were able to process an instance of Berlin with about 130,000 polygons representing green spaces, 18,000 polygons representing residential areas, and 6 million road segments). Furthermore, we show that the optimal assignments resulting from our method enable a subsequent analysis that reveals both interesting global properties of a city as well as spatial patterns. For example, our method allows us to identify neighbourhoods with a shortage of green spaces, which will help spatial planners in their decision-making.

Keywords

Urban green Transportation problem Maximum flow Linear program Cluster analysis 

Zusammenfassung

Analyse des Angebots an und Detektion räumlicher Muster von städtischen Grünflächen. Grünflächen in städtischen Gebieten bieten große Erholungsmöglichkeiten, sofern sie leicht zugänglich sind. Daher sollte eine ideale Stadt große Grünflächen in der Nähe der Wohnungen ihrer Bewohner bieten. Obwohl es mehrere Maße zur Bewertung städtischer Grünflächen gibt, konzentrieren sich die bestehenden Maße in der Regel entweder auf die Gesamtgröße aller Grünflächen oder auf ihre Zugänglichkeit. In diesem Artikel stellen wir daher eine neue Methode zur integrierten Bewertung der Versorgung und Zugänglichkeit von Grünflächen vor. Der Kern unserer Methodik ist ein Algorithmus, der auf linearer Programmierung basiert und eine optimale Zuordnung zwischen Wohngebieten und Grünflächen berechnet. In seiner Grundeinstellung weist er jedem Bewohner exklusiv Grünflächen einer vorgegebenen Größe zu, so dass eine mathematische Zielfunktion optimiert wird, die insbesondere den durchschnittlichen Abstand zwischen Bewohnern und zugewiesenen Grünflächen berücksichtigt. In einer ausführlichen Diskussion zeigen wir, wie diese zuweisungsbasierte Methode so in der Praxis umgesetzt werden kann, dass sie plausible Ergebnisse liefert (z.B. durch Berücksichtigung von Entfernungen im Straßennetz) und effizient genug für die Analyse großer Ballungsräume ist. Zum Beispiel sind wir in der Lage, eine Instanz von Berlin mit etwa 130.000 Polygonen für Grünflächen, 18.000 Polygonen für Wohngebiete und 6 Millionen Straßensegmenten zu verarbeiten. Darüber hinaus zeigen wir, dass die optimalen Zuordnungen, die sich aus unserer Methode ergeben, eine nachfolgende Analyse ermöglichen, die sowohl interessante globale Eigenschaften einer Stadt als auch räumliche Muster aufdeckt. Unsere Methode ermöglicht es uns beispielsweise, Nachbarschaften mit einem Mangel an Grünflächen zu identifizieren, was Raumplanern bei ihrer Entscheidungsfindung hilft.

References

  1. Barbosa O, Tratalos JA, Armsworth PR, Davies RG, Fuller RA, Johnson P, Gaston KJ (2007) Who benefits from access to green space? A case study from Sheffield, UK. Landsc Urban Plan 83(2–3):187–195.  https://doi.org/10.1016/j.landurbplan.2007.04.004 CrossRefGoogle Scholar
  2. Baycan-Levent T, Vreeker R, Nijkamp P (2009) A multi-criteria evaluation of green spaces in European cities. Eur Urban Reg Stud 16(2):193–213.  https://doi.org/10.1177/0969776408101683 CrossRefGoogle Scholar
  3. Bedimo-Rung AL, Mowen AJ, Cohen DA (2005) The significance of parks to physical activity and public health: a conceptual model. Am J Prev Med 28(2):159–168.  https://doi.org/10.1016/j.amepre.2004.10.024 CrossRefGoogle Scholar
  4. Bjerke T, Østdahl T, Thrane C, Strumse E (2006) Vegetation density of urban parks and perceived appropriateness for recreation. Urban Fore Urban Green 5:35–44.  https://doi.org/10.1016/j.ufug.2006.01.006 CrossRefGoogle Scholar
  5. Cohen DA, McKenzie TL, Sehgal A, Williamson S, Golinelli D, Lurie N (2007) Contribution of public parks to physical activity. Am J Public Health 97(3):509–514.  https://doi.org/10.2105/AJPH.2005.072447 CrossRefGoogle Scholar
  6. Comber A, Brunsdon C, Green E (2008) Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups. Landsc Urban Plan 86(1):103–114.  https://doi.org/10.1016/j.landurbplan.2008.01.002 CrossRefGoogle Scholar
  7. Coombes E, Jones AP, Hillsdon M (2010) The relationship of physical activity and overweight to objectively measured green space accessibility and use. Soc Sci Med 70(6):816–822.  https://doi.org/10.1016/j.socscimed.2009.11.020 CrossRefGoogle Scholar
  8. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. MIT Press, CambridgeGoogle Scholar
  9. Ford LR Jr, Fulkerson DR (1955) A simple algorithm for finding maximal network flows and an application to the hitchcock problem. Tech. rep, RAND CorpGoogle Scholar
  10. Ford LR Jr, Fulkerson DR (1956) Solving the transportation problem. Manag Sci 3(1):24–32.  https://doi.org/10.1287/mnsc.3.1.24 CrossRefGoogle Scholar
  11. Fuller RA, Gaston KJ (2009) The scaling of green space coverage in European cities. Biol Lett 5(3):352–355.  https://doi.org/10.1098/rsbl.2009.0010 CrossRefGoogle Scholar
  12. Gass SI (1990) On solving the transportation problem. J Oper Res Soc 41(4):291–297.  https://doi.org/10.1057/jors.1990.50 CrossRefGoogle Scholar
  13. Giles-Corti B, Donovan RJ (2002) The relative influence of individual, social and physical environment determinants of physical activity. Soc Sci Med 54:1793–1812.  https://doi.org/10.1016/S0277-9536(01)00150-2 CrossRefGoogle Scholar
  14. Grunewald K, Richter B, Meinel G, Herold H, Syrbe RU (2017) Proposal of indicators regarding the provision and accessibility of green spaces for assessing the ecosystem service “recreation in the city” in Germany. Int J Biodivers Sci Ecosyst Serv Manag 13(2):26–39.  https://doi.org/10.1080/21513732.2017.1283361 CrossRefGoogle Scholar
  15. Gupta K, Roy A, Luthra K, Maithani S (2016) Mahavir: GIS based analysis for assessing the accessibility at hierarchical levels of urban green spaces. Urban For Urban Green 18:198–211.  https://doi.org/10.1016/j.ufug.2016.06.005 CrossRefGoogle Scholar
  16. Haaland C, Konijnendijk van den Bosch C (2015) Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For Urban Green 14(4):760–771.  https://doi.org/10.1016/j.ufug.2015.07.009 CrossRefGoogle Scholar
  17. Haase D, Schwarz N, Strohbach M, Kroll F, Seppelt R (2012) Synergies, trade-offs, and losses of ecosystem services in urban regions: an integrated multiscale framework applied to the leipzig-halle region. Germany. Ecol Soc 17(3):  https://doi.org/10.5751/ES-04853-170322
  18. Hartig T (2004) Restorative Environments. In: Encyclopedia of applied psychology, vol 3 Elsevier Inc., pp 273–279.  https://doi.org/10.1016/B0-12-657410-3/00821-7 CrossRefGoogle Scholar
  19. Haunert JH, Meulemans W (2016) Partitioning polygons via graph augmentation. In: Proc. Int. Conf. geographic information science (GIScience 2016). Springer, pp 18–33.  https://doi.org/10.1007/978-3-319-45738-3_2 CrossRefGoogle Scholar
  20. Hegetschweiler KT, de Vries S, Arnberger A, Bell S, Brennan M, Siter N, Stahl Olafsson A, Voigt A, Hunziker M (2017) Linking demand and supply factors in identifying cultural ecosystem services of urban green infrastructures: a review of European studies. Urban For Urban Green 21(November):48–59.  https://doi.org/10.1016/j.ufug.2016.11.002 CrossRefGoogle Scholar
  21. Indermühle S, Laube P, Geilhausen M, Zwicker T (2014) Multi-criteria aggregation for sensistive parcel-based census data. In: Proceedings of 8th international conference on geographic information science (GIScience ’14), pp 306–310Google Scholar
  22. Kong F, Yin H, Nakagoshi N (2007) Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City, China. Landsc Urban Plan 79(3–4):240–252.  https://doi.org/10.1016/j.landurbplan.2006.02.013 CrossRefGoogle Scholar
  23. Lee ACK, Maheswaran R (2010) The health benefits of urban green spaces: a review of the evidence. J Public Health 33(2):212–222.  https://doi.org/10.1093/pubmed/fdq068 CrossRefGoogle Scholar
  24. McCormack GR, Rock M, Toohey AM, Hignell D (2010) Characteristics of urban parks associated with park use and physical activity: a review of qualitative research. Health Place 16(4):712–726.  https://doi.org/10.1016/j.healthplace.2010.03.003 CrossRefGoogle Scholar
  25. Mörtberg U, Goldenberg R, Kalantari Z, Kordas O, Deal B, Balfors B, Cvetkovic V (2017) Integrating ecosystem services in the assessment of urban energy trajectories—a study of the Stockholm Region. Energy Policy 100:338–349.  https://doi.org/10.1016/j.enpol.2016.09.031 CrossRefGoogle Scholar
  26. Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Ind Appl Math 5(1):32–38.  https://doi.org/10.1137/0105003 CrossRefGoogle Scholar
  27. National Recreation and Park Association17:: NRPA Agency Performance Review (2019). https://www.nrpa.org/siteassets/nrpa-agency-performance-review.pdf. Accessed 16 July 2019
  28. Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, Hoboken.  https://doi.org/10.1002/9781118627372 CrossRefGoogle Scholar
  29. Nicholls S (2001) Measuring the accessibility and e quity of public parks: a case study using GIS. Manag Leis 6(4):201–219.  https://doi.org/10.1080/13606710110084651 CrossRefGoogle Scholar
  30. Niedermann B, Oehrlein J, Lautenbach S, Haunert J-H (2018) A network flow model for the analysis of green spaces in urban areas. In: Proc. 10th international conference on geographic information science (GIScience ’18), Leibniz international proceedings in informatics (LIPIcs), vol 114, pp 13:1–13:16  https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.13
  31. Norman GJ, Nutter SK, Ryan S, Sallis JF, Calfas KJ, Patrick K (2006) Community design and access to recreational facilities as correlates of adolescent physical activity and body-mass index. J Phys Act Health 3:118–128.  https://doi.org/10.1123/jpah.3.s1.s118 CrossRefGoogle Scholar
  32. Oh K, Jeong S (2007) Assessing the spatial distribution of urban parks using GIS. Landsc Urban Plan 82(January):25–32.  https://doi.org/10.1016/j.landurbplan.2007.01.014 CrossRefGoogle Scholar
  33. Panduro TE, Veie KL (2013) Classification and valuation of urban green spaces—a hedonic house price valuation. Landsc Urban Plan 120:119–128.  https://doi.org/10.1016/j.landurbplan.2013.08.009 CrossRefGoogle Scholar
  34. Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front Ecol Environ 9(1):27–36.  https://doi.org/10.1890/090220 CrossRefGoogle Scholar
  35. Potestio ML, Patel AB, Powell CD, McNeil DA, Jacobson RD, McLaren L (2009) Is there an association between spatial access to parks/green space and childhood overweight/obesity in Calgary, Canada ? Int J Behav Nutr Phys Act 6(1):77.  https://doi.org/10.1186/1479-5868-6-77 CrossRefGoogle Scholar
  36. Roemmich JN, Epstein LH, Raja S, Yin L, Robinson J, Winiewicz D (2006) Association of access to parks and recreational facilities with the physical activity of young children. Prev Med 43:437–441.  https://doi.org/10.1016/j.ypmed.2006.07.007 CrossRefGoogle Scholar
  37. Sandström U, Angelstam P, Mikusiński G (2006) Ecological diversity of birds in relation to the structure of urban green space. Landsc Urban Plan 77(1–2):39–53.  https://doi.org/10.1016/j.landurbplan.2005.01.004 CrossRefGoogle Scholar
  38. Schröter F (2017) Orientierungswerte (Richtwerte) für die Planung . https://www.dr-frank-schroeter.de/planungsrichtwerte.htm. Accessed 16 July 2019
  39. Sister C, Wolch J, Wilson J (2010) Got green? Addressing environmental justice in park provision. GeoJournal 75(3):229–248.  https://doi.org/10.1007/s10708-009-9303-8 CrossRefGoogle Scholar
  40. Talen E (2013) The social equity of urban service distribution: An exploration of park access in Pueblo, Colorado, and Macon, Georgia. Urban Geogr 18(6):521–541.  https://doi.org/10.2747/0272-3638.18.6.521 CrossRefGoogle Scholar
  41. Taylor AF, Wiley A, Kuo FE, Sullivan WC (1998) Growing up in the inner city: green spaces as places to grow. Environ Behav 30(1):3–27.  https://doi.org/10.1177/0013916598301001 CrossRefGoogle Scholar
  42. Toftager M, Ekholm O, Schipperijn J, Stigsdotter U, Bentsen P, Grønbæk M, Randrup TB, Kamper-jørgensen F (2011) Distance to green space and physical activity: a Danish national representative survey. J Phys Act Health 8:741–749.  https://doi.org/10.1123/jpah.8.6.741 CrossRefGoogle Scholar
  43. Tyrväinen L, Mäkinen K, Schipperijn J (2007) Tools for mapping social values of urban woodlands and other green areas. Landsc Urban Plan 79(1):5–19.  https://doi.org/10.1016/j.landurbplan.2006.03.003 CrossRefGoogle Scholar
  44. Tyrväinen L, Pauleit S, Seeland K, de Vries S (2005) Benefits and uses of urban forests and trees. In: Konijnendijk C, Nilsson K, Randrup T, Schipperijn J (eds) Urban forests and trees: a reference book, chap 4. Springer, Berlin, pp 81–114.  https://doi.org/10.1007/3-540-27684-X_5 CrossRefGoogle Scholar
  45. Van Herzele A, Wiedemann T (2003) A monitoring tool for the provision of accessible and attractive urban green spaces. Landsc Urban Plan 63(2):109–126.  https://doi.org/10.1016/S0169-2046(02)00192-5 CrossRefGoogle Scholar
  46. Wolch JR, Byrne J, Newell JP (2014) Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc Urban Plan 125(Supplement C):234–244.  https://doi.org/10.1016/j.landurbplan.2014.01.017 CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V. 2019

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany

Personalised recommendations