Advertisement

Geiger-Mode LiDAR-Technologien für die großflächige und detaillierte 3D-Topographieerfassung

  • Thomas BahrEmail author
  • Nicolai Holzer
  • Philip Smith
Report
  • 86 Downloads

Zusammenfassung

Die neuen Harris-Lösungen für Geiger-Mode Avalanche Photodiode (GmAPD) LiDAR umfassen Sensorik, Datenprozessierung und Analytik. Nach 15 Jahren Entwicklung für den Militärsektor bietet Harris diese Technologien erstmals im kommerziellen LiDAR-Markt an. Dieser Beitrag beschreibt, warum GmAPDs die Effizienz von LiDAR-Akquisitionen steigern, wie der ITI-1000 Sensor eine kostengünstige und hochauflösende 3D-Topographieerfassung von über 1.000 km2/h ermöglicht, und wie das zugehörige Breitband-Produktionssystem trotz erhöhter Präzision die Verarbeitungsdauer für GmAPD-Punktwolken reduziert. Zur Bewertung der GmAPD LiDAR-Daten, insbesondere für das „3D Elevation Program“ des Geologischen Dienstes der USA (USGS), werden zwei Fallstudien vorgestellt.

Abstract

This presentation describes Harris’ new Geiger-mode Avalanche Photodiode (GmAPD) LiDAR solutions—a suite of sensors, processing tools and analytics born from a 15-year GmAPD legacy within certain DoD environments that will bring a significant increase in production efficiency to the commercial market. The objective of the sensor design was to support USGS LiDAR Quality Level 1 (and higher) data production over large areas from pressurized, fixed-wing aircrafts flying at altitudes of between 4 km and 10 km AGL. Topics to be covered include why GmAPD sensing is a significant advance in LiDAR collection efficiency, how the ITI-1000 GmAPD LiDAR sensor supports cost-effective, wide-area, high-density collection with coverage rates much greater than 1000 km2/h and how a high-volume production system, including noise reduction and photogrammetric registration techniques, is designed to reduce the production time for GmAPD 3D point clouds while increasing data accuracy. For the assessment of the GmAPD LiDAR data, in particular for the “3D Elevation Program” of the US Geological Survey (USGS), two case studies are presented.

Keywords

Geiger-mode LiDAR-sensor Avalanche photodiode detector Production system Photogrammetry Point clouds 

Literatur

  1. Cary T (2009) LiDAR Market: Status and Growth Trends. International LiDAR Mapping Forum, Denver, CO, USAGoogle Scholar
  2. Clifton WE, Steele B, Nelson G, Truscott A, Itzler M, Entwistle M (2015) Medium Altitude Airborne Geiger-Mode Mapping Lidar System. Proc SPIE 965:946506-1–946506-8.  https://doi.org/10.1117/12.861600 CrossRefGoogle Scholar
  3. Flood M (2016) Geiger-Mode LIDAR Workflow Review. http://support.geocue.com/geiger-mode-lidar-workflow-review/. Accessed 11 July 2018
  4. Heidemann HK (2014) Lidar base specification. US Geological Survey Techniques and Methods, 11-B4, p 67.  https://doi.org/10.3133/tm11b4
  5. Itzler M, Entwistle M, Owens M, Patel K, Jiang X, Slomkowski K, Ferrar J (2010) Geiger-mode avalanche photodiode focal plane arrays for three-dimensional imaging LADAR. Proc SPIE 7808:14.  https://doi.org/10.1117/12.861600 CrossRefGoogle Scholar
  6. Smith P (2015) High density, high volume point cloud production from airborne Geiger-Mode LiDAR. International LiDAR Mapping Forum, Denver, CO, USAGoogle Scholar
  7. Stoker JM, Abdullah QA, Nayeghandi A, Winehouse J (2016a) Evaluation of single photon and Geiger mode Lidar for the 3D elevation program. Rem Sens 8:767.  https://doi.org/10.3390/rs8090767 CrossRefGoogle Scholar
  8. Stoker JM, Abdullah QA, Nayeghandi A (2016b) Geiger Mode and single photon counting evaluation. https://calval.cr.usgs.gov/wordpress/wp-content/uploads/GM-SPL-evaluation_JACIE2016_v3.pdf. Accessed 11 July 2018
  9. USGS (2016) 3D elevation program (3DEP). https://nationalmap.gov/3DEP/. Accessed 11 July 2018

Copyright information

© Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V. 2018

Authors and Affiliations

  1. 1.Harris Geospatial Solutions GmbHGilchingGermany
  2. 2.Harris CorporationMelbourneUSA

Personalised recommendations