, 4:22 | Cite as

A 190-ka biomarker record revealing interactions between sea ice, Atlantic Water inflow and ice sheet activity in eastern Fram Strait

  • A. KremerEmail author
  • R. Stein
  • K. Fahl
  • H. Bauch
  • A. Mackensen
  • F. Niessen
Original Article
Part of the following topical collections:
  1. PAST Gateways


The northeastern Fram Strait at the entrance to the Arctic Ocean represents a key observatory for sea ice reconstructions as it sensitively reacts to environmental changes. A combined biomarker approach (HBIs, sterols, alkenones) was carried out on Core PS93/006-1 from the western Svalbard margin to reconstruct sea ice conditions related to glacial–interglacial cycles of the last 190 ka. The continuous presence of sea ice demonstrates the strong influence of polar water masses in the eastern Fram Strait. Glacial intervals are characterised by extended sea ice conditions with perennial sea ice cover during early MIS 6, the Penultimate Glacial Maximum, the interstadial MIS 5d, MIS 4 and the Last Glacial Maximum. Less severe, yet highly variable, sea ice conditions with more frequent summer melt dominated the interglacial stages. The opposing sea ice conditions along the western and northern Svalbard margin highlight the different regional impact of various environmental forces in eastern Fram Strait. Thus, the major expansion of the Svalbard Barents Sea Ice Sheet favoured the formation of perennial sea ice west of Svalbard while it triggered the establishment of marginal ice cover on the Yermak Plateau.


Sea ice Ice sheets IP25 Biomarker Arctic ocean Fram strait 



We thank the captain and the crew of R/V Polarstern for excellent cooperation during the cruise PS93 in 2015. Thanks to Walter Luttmer and Lisa Schönborn for technical support during the laboratory work. Thanks to Simon Belt and colleagues (Biogeochemistry Research Centre, University of Plymouth) for providing the internal standard for the IP25 analyses. The paper is a contribution to the German–Chinese project with the title “Natural variability of Arctic sea ice and its significance for global climate change and organic carbon cycle”. Financial support was given by the Federal Ministry of Education and Research (BMBF, Project no. 01DO14004). The authors would like to thank the editor and two anonymous reviewers for their thorough comments that helped to improve the manuscript.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Aagaard K (1982) Inflow from the Atlantic Ocean to the Polar Basin. In: Rey L (ed) The Arctic Ocean. Comité Arctique International, Monaco, pp 69–82Google Scholar
  2. 2.
    Aagaard K, Foldvik A, Hillman SR (1987) The West Spitsbergen Current—disposition and water mass transformation. J Geophys Res Oceans 92:3778–3784Google Scholar
  3. 3.
    Aagaard K, Coachman L (1968) The East Greenland Current north of Denmark Strait: part II. Arctic 21:181–200Google Scholar
  4. 4.
    Aagaard K, Greisman P (1975) Toward new mass and heat budgets for the Arctic Ocean. J Geophys Res 80:3821–3827Google Scholar
  5. 5.
    Alkire MB, Morison J, Andersen R (2015) Variability in the meteoric water, sea-ice melt, and Pacific water contributions to the central Arctic Ocean, 2000–2014. J Geophys Res Oceans 120:1573–1598Google Scholar
  6. 6.
    Bauch HA, Erlenkeuser H, Fahl K, Spielhagen RF, Weinelt MS, Andruleit H, Henrich R (1999) Evidence for a steeper Eemian than Holocene sea surface temperature gradient between Arctic and sub-Arctic regions. Palaeogeogr Palaeoclimatol Palaeoecol 145, 95–117Google Scholar
  7. 7.
    Bauch HA, Kandiano ES, Helmke JP (2012) Contrasting ocean changes between the subpolar and polar North Atlantic during the past 135 ka. Geophys Res Lett 39:L11604Google Scholar
  8. 8.
    Bauch HA, Erlenkeuser H (2008) A “critical” climatic evaluation of Last Interglacial (MIS 5e) records from the Norwegian Sea. Polar Res 27:135–151Google Scholar
  9. 9.
    Belt ST, Allard WG, Massé G, Robert JM, Rowland SJ (2000) Highly branched isoprenoids (HBIs): Identification of the most common and abundant sedimentary isomers. Geochim Cosmochim Acta 64:3839–3851Google Scholar
  10. 10.
    Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27Google Scholar
  11. 11.
    Belt ST, Massé G, Vare LL, Rowland SJ, Poulin M, Sicre M-A, Sampei M, Fortier L (2008) Distinctive 13C isotopic signature distinguishes a novel sea ice biomarker in Arctic sediments and sediment traps. Mar Chem 112:158–167Google Scholar
  12. 12.
    Belt ST, Cabedo-Sanz P, Smik L, Navarro-Rodriguez A, Berben SMP, Knies J, Husum K (2015) Identification of paleo Arctic winter sea ice limits and the marginal ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth Planet Sci Lett 431:127–139Google Scholar
  13. 13.
    Belt ST, Brown TA, Smik L, Tatarek A, Wiktor J, Stowasser G, Assmy P, Allen CS, Husum K (2017) Identification of C25 highly branched isoprenoid (HBI) alkenes in diatoms of the genus Rhizosolenia in polar and sub-polar marine phytoplankton. Org Geochem 110:65–72Google Scholar
  14. 14.
    Belt ST, Müller J (2013) The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quat Sci Rev 79:9–25Google Scholar
  15. 15.
    Bischof J, Koch J, Kubisch M, Spielhagen RF, Thiede J (1990) Nordic seas surface ice drift reconstructions: Evidence from ice-rafted coal fragments during oxygen isotope stage 6. In: Dowdeswell JA, Scourse JD (eds). Glacimarine environments: processes and sediments (vol 53, pp 235–251). Geological Society of Special Publication, LondonGoogle Scholar
  16. 16.
    Blindheim JV, Borovkov B, Hansen SA, Maimberg WR, Turrell, Osterbus S (2000) Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing. Deep Sea Res 47:655–680Google Scholar
  17. 17.
    Boon JJ, Rijpstra WIC, Delange F, Deleeuw JW, Yoshioka M, Shimizu Y (1979) Black sea sterol—molecular fossil for dinoflagellate blooms. Nature 277:125–127Google Scholar
  18. 18.
    Born A, Nisancioglu KH, Risebrobakken B (2011) Late Eemian warming in the Nordic Seas as seen in proxy data and climate models. Paleoceanogr Paleoclimatol 26:PA2207Google Scholar
  19. 19.
    Bourke R, Weigel A, Paquette R (1988) The westward turning branch of the West Spitsbergen Current. J Geophys Res Oceans 93:14065–14077Google Scholar
  20. 20.
    Broecker WS (1997) Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science 278:1582–1588Google Scholar
  21. 21.
    Brown T, Belt S, Tatarek A, Mundy C (2014) Source identification of the Arctic sea ice proxy IP25. Nat Commun 5:4197Google Scholar
  22. 22.
    Cabedo-Sanz P, Belt ST, Knies J (2013) Identification of contrasting seasonal sea ice conditions during the Younger Dryas. Quat Sci Rev 79:74–86Google Scholar
  23. 23.
    Cabedo-Sanz P, Belt ST, Jennings AE, Andrews JT, Geirsdóttir Á (2016) Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8000 years: a multi-proxy evaluation. Quat Sci Rev 146:99–115Google Scholar
  24. 24.
    Cabedo-Sanz P, Belt ST (2016) Seasonal sea ice variability in eastern Fram Strait over the last 2000 years. Arktos 2:1–12Google Scholar
  25. 25.
    Carmack E, Polyakov I, Padman L, Fer I, Hunke E, Hutchings J, Jackson J, Kelley D, Kwok R, Layton C, Melling H, Perovich D, Persson O, Ruddick B, Timmermanns M-L, Toole J, Ross T, Vavrus S, Winsor P (2015) Towards quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull Am Meteor Soc 96(12):2079–2105Google Scholar
  26. 26.
    Chauhan T, Rasmussen TL, Noormets R (2016) Palaeoceanography of the Barents Sea continental margin, north of Nordaustlandet, Svalbard, during the last 74 ka. Boreas 45:76–99Google Scholar
  27. 27.
    Coachman LK, Aagaard K (1974) Physical Oceanography of Arctic and Subarctic Seas. In: Herman Y (ed) Marine geology and oceanography of the Arctic Seas. Springer, Berlin, pp 1–72Google Scholar
  28. 28.
    Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607Google Scholar
  29. 29.
    De Steur L, Hansen E, Mauritzen C, Beszczynska-Möller A, Fahrbach E (2014) Impact of recirculation on the East Greenland Current in Fram Strait: results from moored current meter measurements between 1997 and 2009. Deep Sea Res I 92:26–40Google Scholar
  30. 30.
    Dieckmann GS, Hellmer HH (2008) The Importance of Sea Ice: An Overview. In: Thomas DN, Diekmann GS (eds) Sea Ice: an introduction to its physics, chemistry, biology, and geology. Blackwell Science, Oxford, pp 1–21Google Scholar
  31. 31.
    Dokken TM, Hald M (1996) Rapid climatic shifts during isotope stages 2–4 in the Polar North Atlantic. Geology 24:599–602Google Scholar
  32. 32.
    Ezat MM, Rasmussen TL, Groeneveld J (2014) Persistent intermediate water warming during cold stadials in the southeastern Nordic seas during the past 65 k.y. Geology 42:663–666Google Scholar
  33. 33.
    Fahl K, Stein R, Gaye-Haake B, Gebhardt C, Kodina LA, Unger D, Ittekkot V (2003) Biomarkers in surface sediments from the Ob and Yenisei estuaries and southern Kara Sea: evidence for particulate organic carbon sources, pathways, and degradation. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences, vol 6. Elsevier, Amsterdam, pp 329–348Google Scholar
  34. 34.
    Fahl K, Stein R (1999) Biomarkers as organic-carbon-source and environmental indicators in the Late Quaternary Arctic Ocean: ‘‘Problems and perspectives’’. Mar Chem 63:293–309Google Scholar
  35. 35.
    Fahl K, Stein R (2012) Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: new insights from biomarker proxy records. Earth Planet Sci Lett 351:123–133Google Scholar
  36. 36.
    Fahrbach E, Meincke J, Osterhus S, Rohardt G, Schauer U, Tverberg V, Verduin J (2001) Direct measurements of volume transports through Fram Strait. Polar Res 20:17–224Google Scholar
  37. 37.
    Falk-Petersen S, Pavlov V, Berge J, Cottier F, Kovacs KM, Lydersen C (2015) At the rainbow’s end: high productivity fueled by winter upwelling along an Arctic shelf. Polar Biol 38:5–11Google Scholar
  38. 38.
    Fischer N, Jungclaus JH (2010) Effects of orbital forcing on atmosphere and ocean heat transports in Holocene and Eemian climate simulations with a comprehensive Earth system model. Clim Past 6:155–168Google Scholar
  39. 39.
    Gerland S, Renner AHH (2007) Sea ice mass balance in an Arctic fjord. Ann Glaciol 46:435–442Google Scholar
  40. 40.
    Haine TW, Curry B, Gerdes R, Hansen E, Karcher M, Lee C, Rudels B, Spreen G, de Steur L, Stewart KD, Woodgate R (2015) Arctic freshwater export: status, mechanisms, and prospects. Glob Planet Change 125:13–35Google Scholar
  41. 41.
    Hall A (2004) The role of surface albedo feedback in climate. J Clim 17:1550–1568Google Scholar
  42. 42.
    Hattermann T, Isachsen PE, von Appen W-J, Albretsen J, Sundfjord A (2016) Where eddies drive recirculation of Atlantic Water in Fram Strait. Geophys Res Lett 7:3406–3414Google Scholar
  43. 43.
    Haugan PM (1999) Structure and heat content of the West Spitsbergen Current. Polar Res 18(2):183–188Google Scholar
  44. 44.
    Hebbeln D, Dokken T, Andersen ES, Hald M, Elverhøi A (1994) Moisture supply for northern ice-sheet growth during the Last Glacial Maximum. Nature 370:357–359Google Scholar
  45. 45.
    Hebbeln D, Henrich R, Baumann K-H (1998) Paleoceanography of the last interglacial/glacial cycle in the Polar North Atlantic. Quat Sci Rev 17:125–153Google Scholar
  46. 46.
    Hebbeln D, Wefer G (1997) Late Quaternary paleoceanography in the Fram Strait. Paleoceanography 12:65–78Google Scholar
  47. 47.
    Helmke JP, Bauch HA (2003) Comparison of glacial and interglacial conditions between the polar and subpolar North Atlantic region over the last five climatic cycles. Paleoceanography. CrossRefGoogle Scholar
  48. 48.
    Henrich R (1998) Dynamics of Atlantic water advection to the Norwegian-Greenland Sea—time-slice record of carbonate distribution in the last 300 ky. Mar Geol 145:95–131Google Scholar
  49. 49.
    Hoff U, Rasmussen TL, Stein R, Ezat MM, Fahl K (2016) Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present. Nature Communications 7:12247Google Scholar
  50. 50.
    Hörner T, Stein R, Fahl K, Birgel D (2016) Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean)—a high-resolution biomarker study. Quat Sci Rev 143:133–149Google Scholar
  51. 51.
    Hughes ALC, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2016) The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45Google Scholar
  52. 52.
    Ingólfsson Ó, Landvik JY (2013) The Svalbard–Barents Sea ice-sheet—historical, current and future perspectives. Quat Sci Rev 64:33–60Google Scholar
  53. 53.
    Ionita M, Scholz P, Lohmann G, Dima M, Prange M (2016) Linkages between atmospheric blocking, sea ice export through Fram Strait and the Atlantic Meridional Overturning Circulation. Sci Rep 6:32881Google Scholar
  54. 54.
    Jakobsson M, Andreassen K, Bjarnadóttir LR, Dove D, Dowdeswell JA, England JH, Funder S, Kelly Hogan K, Ingólfsson Ó, Jennings AE, Larsen NK, Kirchner N, Landvik JY, Mayer LA, Mikkelsen N, Möller P, Niessen F, Nilsson J, O’Regan M, Polyak L, Nørgaard- Pedersen N, Stein R (2014) Arctic Ocean glacial history. Quat Sci Rev 92:40–67Google Scholar
  55. 55.
    Jessen SP, Rasmussen TL, Nielsen T, Solheim A (2010) A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000–0 cal years BP. Quat Sci Rev 29:1301–1312Google Scholar
  56. 56.
    Johns L, Wraige EJ, Belt ST, Lewis CA, Masseu G, Robert J-M, Rowland SJ (1999) Identification of C25 highly branched isoprenoid (HBI) dienes in Antarctic sediments, sea- ice diatoms and laboratory cultures of diatoms. Org Geochem 30:1471–1475Google Scholar
  57. 57.
    Kandiano ES, Bauch HA, Müller A (2004) Sea surface temperature variability in the North Atlantic during the last two glacial-interglacial cycles: comparison of faunal, oxygen isotopic and Mg/Ca-derived records. Palaeogeogr Palaeoclimatol Palaeoecol 204:145–164Google Scholar
  58. 58.
    Kawasaki T, Hasumi H (2016) The inflow of Atlantic water at the Fram Strait and its interannual variability. J Geophys Res Oceans 121:502–519Google Scholar
  59. 59.
    Knies J, Vogt C, Stein R (1999) Late Quaternary growth and decay of the Svalbard/Barents Sea ice sheet and paleoceanographic evolution in the adjacent Arctic Ocean. Geo Mar Lett 18:195–202Google Scholar
  60. 60.
    Knies J, Nowaczyk N, Müller C, Vogt C, Stein R (2000) A multiproxy approach to reconstruct the environmental changes along the Eurasian continental margin over the last 150 000 years. Mar Geol 163:317–344Google Scholar
  61. 61.
    Knies J, Cabedo-Sanz P, Belt ST (2014) The emergence of modern sea ice cover in the Arctic Ocean. Nat Commun 5:5608Google Scholar
  62. 62.
    Kolling HM, Stein R, Fahl K, Perner K, Moros M (2017) Short-term variability in late Holocene sea ice cover on the East Greenland Shelf and its driving mechanisms. Palaeogeogr Palaeoclimatol Palaeoecol 485(1):336–350Google Scholar
  63. 63.
    Kremer A, Stein R, Fahl K, Ji Z, Yang Z, Wiers S, Matthiessen J, Forwick M, Löwemark L, O’Regan M, Chen J, Snowball I (2018) Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka—reconstructions from biomarker records. Quat Sci Rev (in review) Google Scholar
  64. 64.
    Landvik JY, Bondevik S, Elverhøi A, Fjeldskaar W, Mangerud J, Salvigsen O, Siegert MJ, Svendsen JI, Vorren TO (1998) The last glacial maximum of Svalbard and the Barents Sea area: Ice sheet extent and configuration. Quat Sci Rev 17:43–75Google Scholar
  65. 65.
    Laskar J, Robutel P, Joutel F, Gastineau M, Correia A, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285Google Scholar
  66. 66.
    Lind S, Ingvaldsen R (2012) Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep Sea Res 62(I):70–88Google Scholar
  67. 67.
    Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003Google Scholar
  68. 68.
    Mangerud J, Dokken T, Hebbeln D, Heggen B, Ingólfsson O, Landvik JY, Mejdahl V, Svendsen JI, Vorren TO (1998) Fluctuations of the Svalbard–Barents Sea Ice Sheet during the last 150 000 years. Quat Sci Rev 17:11–42Google Scholar
  69. 69.
    Manley T, Bourke R, Hunkins K (1992) Near-surface circulation over the Yermak Plateau in northern Fram Strait. J Mar Syst 3:107–125Google Scholar
  70. 70.
    Manley T (1995) Branching of Atlantic Water within the Greenland-Spitsbergen Passage: an estimate of recirculation. J Geophys Res Oceans 100:20627–20634Google Scholar
  71. 71.
    Marnela M, Rudels B, Houssais MN, Beszczynska-Möller A, Eriksson PB (2013) Recirculation in the Fram Strait and transports of water in and north of the Fram Strait derived from CTD data. Ocean Sci 9(3):499–519Google Scholar
  72. 72.
    Massé G, Belt ST, Crosta X, Schmidt S, Snape I, Thomas DN, Rowland SJ (2011) Highly branched isoprenoids as proxies for variable sea ice conditions in the Southern Ocean. Antarct Sci 23:487–498Google Scholar
  73. 73.
    Matthiessen J, Knies J, Nowaczyk NR, Stein R (2001) Late Quaternary dinoflagellate cyst stratigraphy at the Eurasian continental margin, Arctic Ocean: indications for Atlantic water inflow in the past 150,000 years. Glob Planet Change 31:65–86Google Scholar
  74. 74.
    Matthiessen J, Knies J (2001) Dinoflagellate cyst evidence for warm interglacial conditions at the northern Barents Sea margin, during marine isotope stage 5. J Quat Sci 16:727–737Google Scholar
  75. 75.
    Meier WN, Hovelsrud GK, van Oort BEH, Key JR, Kovacs KM, Michel C, Haas C, Granskog MA, Gerland S, Perovich DK, Makshtas A, Reist JD (2014) Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev Geophys 52:185–217. CrossRefGoogle Scholar
  76. 76.
    Meyer A, Sundfjord A, Fer I, Provost C, Villacieros-Robineau N, Koenig Z, Onarheim IH, Smedsrud LH, Duarte P, Dodd PA, Graham RM, Schmidtko S, Kauko HM (2017) Winter to summer oceanographic observations in the Arctic Ocean north of Svalbard. J Geophys Res Oceans 122(8):6218–6237Google Scholar
  77. 77.
    Miller GH, Alley RB, Brigham-Grette J, Fitzpatrick JJ, Polyak L, Serreze M, White JWC (2010) Arctic Amplification: can the past constrain the future? Quat Sci Rev 29:1779–1790Google Scholar
  78. 78.
    Mosby H (1962) Water, salt and heat balance of the North Polar Sea and the Norwegian Sea. Geophys Publ 24 (11):289–313Google Scholar
  79. 79.
    Müller J, Massé G, Stein R, Belt ST (2009) Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nat Geosci 2:772–776Google Scholar
  80. 80.
    Müller J, Wagner A, Fahl K, Stein R, Prange M, Lohmann G (2011) Towards quantitative sea ice reconstructions in the northern North Atlantic: a combined biomarker and numerical modelling approach. Earth Planet Sci Lett 306:137–148Google Scholar
  81. 81.
    Müller J, Werner K, Stein R, Fahl K, Moros M, Jansen E (2012) Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat Sci Rev 47:1–14Google Scholar
  82. 82.
    Müller J, Stein R (2014) High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice–ocean interactions during abrupt climate shifts. Earth Planet Sci Lett 403:446–455Google Scholar
  83. 83.
    Navarro-Rodriguez A, Belt ST, Knies J, Brown TA (2013) Mapping recent sea ice conditions in the Barents Sea using the proxy for palaeo sea ice reconstructions. Quat Sci Rev 79:26–39Google Scholar
  84. 84.
    Nørgaard-Pedersen N, Mikkelsen N, Lassen SJ, Kristoffersen Y, Sheldon E (2007) Reduced sea ice concentrations in the Arctic Ocean during the last interglacial period revealed by sediment cores off Northern Greenland. Paleoceanography 22:PA1218Google Scholar
  85. 85.
    Onarheim I, Smedsrud L, Ingvaldsen R, Nilsen F (2014) Loss of sea ice during winter north of Svalbard. Tellus A 66:23933Google Scholar
  86. 86.
    Overland JE, Wang M (2013) When will the summer arctic be nearly sea ice free? Geophys Res Lett 40:2097–2101Google Scholar
  87. 87.
    Popova EE, Yool A, Coward AC, Dupont F, Deal C, Elliott S, Hunke E, Jin M, Steele M, Zhang J (2012) What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. J Geophys Res 117:C00D12Google Scholar
  88. 88.
    Rasmussen TL, Thomsen E, Troelstra SR, Kuijpers A, Prins MA (2003) Millennial-scale glacial variability versus Holocene stability: Changes in planktic and benthic foraminifera faunas and ocean circulation in the North Atlantic during the last 60,000 years. Mar Micropaleontol 47:143–176Google Scholar
  89. 89.
    Risebrobakken B, Dokken T, Jansen E (2005) Extent and variability of the Meridional Atlantic Circulation in the Eastern Nordic Seas during Marine Isotope Stage 5 and its influence on the inception of the Last Glacial. The Nordic Seas: an integrated perspective. merican Geophysical Union, Geophysical Monograph Series, Washington DC, pp 323–339Google Scholar
  90. 90.
    Risebrobakken B, Dokken T, Otterå OH, Jansen E, Gao Y, Drange H (2007) Inception of the Northern European ice sheet due to contrasting ocean and insolation forcing. Quat Res 67:128–135Google Scholar
  91. 91.
    Robinson N, Eglinton G, Brassell SC, Cranwell PA (1984) Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols. Nature 308:439–442Google Scholar
  92. 92.
    Rowland SJ, Allard WG, Belta ST, Massae G, Robert JM, Blackburn S, Frampton D, Revill AT, Volkman JK (2001) Factors influencing the distributions of polyunsaturated terpenoids in the diatom, Rhizosolenia setigera. Phytochemistry 58:717–728Google Scholar
  93. 93.
    Rudels B, Friedrich HJ, Quadfasel D (1999) The Arctic circumpolar boundary current. Deep Sea Res Part II 46:1023–1062Google Scholar
  94. 94.
    Rudels B, Korhonen M, Schauer U, Pisarev S, Rabe B, Wisotzki A (2015) Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget. Prog Oceanogr 132:128–152Google Scholar
  95. 95.
    Sakshaug E (2004) Primary and secondary production in the Arctic Seas. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 57–82Google Scholar
  96. 96.
    Schauer U, Fahrbach E, Osterhus S, Roharardt R (2004) Arctic warming through the Fram Strait: oceanic heat transport from 3 years of measurements. J Geophys Res 109:C06026Google Scholar
  97. 97.
    Schlichtholz P, Houssais M-N (1999) An inverse modeling study in Fram Strait. Part I: dynamics and circulation. Deep Sea Res Part II 46:1083–1135Google Scholar
  98. 98.
    Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337Google Scholar
  99. 99.
    Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change 77:85–96Google Scholar
  100. 100.
    Serreze MC, Francis JA (2006) The arctic amplification debate. Clim Change 76:241–264Google Scholar
  101. 101.
    Smedsrud LH, Halvorsen MH, Stroeve JC, Zhang R, Kloster K (2017) Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere 11:65–79Google Scholar
  102. 102.
    Smik L, Cabedo-Sanz P, Belt ST (2016) Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: a further development of the PIP25 index. Org Geochem 92:63–69Google Scholar
  103. 103.
    Smik L, Belt ST (2017) Distributions of the Arctic sea ice biomarker proxy IP25 and two phytoplanktonic biomarkers in surface sediments from West Svalbard. Org Geochem 105:39–41Google Scholar
  104. 104.
    Spielhagen RF, Baumann KH, Erlenkeuser H, Nowaczyk NR, Norgaard-Pedersen N, Vogt C, Weiel D (2004) Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat Sci Rev 23:1455–1483Google Scholar
  105. 105.
    Spratt RM, Lisiecki LE (2016) A Late Pleistocene sea level stack. Clim Past 12:1079–1092Google Scholar
  106. 106.
    Stein R, Fahl K, Müller J (2012) Proxy reconstruction of Arctic Ocean sea ice history: from IRD to IP25. Polarforschung 82:37–71Google Scholar
  107. 107.
    Stein R (2016) The Expedition PS93.1 of the Research Vessel POLARSTERN to the Greenland Sea and the Fram Strait in 2015. Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine ResearchGoogle Scholar
  108. 108.
    Stein R, Fahl K, Schreck M, Knorr G, Niessen F, Forwick M, Gebhardt C, Jensen L, Kaminski M, Kopf A, Matthiessen J, Jokat W, Lohmann G (2016) Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nat Commun 7:1–13Google Scholar
  109. 109.
    Stein R, Fahl K, Gierz P, Niessen F, Lohmann G (2017) Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial. Nat Commun 8:373Google Scholar
  110. 110.
    Stein R, Fahl K (2013) Biomarker proxy shows potential for studying the entire Quaternary Arctic sea ice history. Org Geochem 55:98–102Google Scholar
  111. 111.
    Stocker TF, Qin, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern- mental Panel on Climate Change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  112. 112.
    Stroeve JC, Serreze MC, Holland MM (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110:1005–1027Google Scholar
  113. 113.
    Svendsen JI, Mangerud J, Elverhoi A, Solheim A, Schuttenhelm RTE (1992) The late Weichselian glacial maximum on western Spitsbergen inferred from offshore sediment cores. Mar Geol 104:1–17Google Scholar
  114. 114.
    Svendsen H, Beszczynska-Möller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21(1):133–166Google Scholar
  115. 115.
    Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingólfsson O, Jakobsson M, Kjaer KH, Larsen E, Lokrantz H, Lunkka JP, Lysa A, Mangerud J, Matiouchkov A, Murray A, Moller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) Late Quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23:1229–1271Google Scholar
  116. 116.
    Thompson WG, Goldstein SL (2006) A radiometric calibration of the SPECMAP timescale. Quat Sci Rev 25:3207–3215Google Scholar
  117. 117.
    Tütken T, Eisenhauer A, Wiegand B, Hansen BT (2002) Glacial–interglacial cycles in Sr and Nd isotopic composition of Arctic marine sediments triggered by the Svalbard/Barents Sea ice sheet. Mar Geol 182:351–372Google Scholar
  118. 118.
    Van Nieuwenhove N, Bauch H, Eynaud F, Kandiano E, Cortijo E, Turon J-L (2011) Evidence for delayed poleward expansion of North Atlantic surface waters during the last interglacial (MIS 5e). Quat Sci Rev 30:934–946Google Scholar
  119. 119.
    Vare LL, Masé G, Gregory TR (2009) Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quat Sci Rev 28:1354–1366Google Scholar
  120. 120.
    Vinje T (1985) Sea ice distribution 1971-80. Norsk Polarinstutt SkrifterGoogle Scholar
  121. 121.
    Vinje T (2001) Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998. J Clim 14:255–267Google Scholar
  122. 122.
    Volkman JK (1986) A review of sterol markers for marine and terrigenous organic-matter. Org Geochem 9:83–99Google Scholar
  123. 123.
    Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F (1998) Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179Google Scholar
  124. 124.
    Volkmann R (2000) Planktic foraminifers in the outer Laptev Sea and the Fram Strait—modern distribution and ecology. J Foramin Res 30:157–176Google Scholar
  125. 125.
    Werner K, Spielhagen RF, Bauch D et al (2013) Atlantic Water advection versus sea ice advances in the eastern Fram Strait during the last 9 ka: multi proxy evidence for a two-phase Holocene. Paleoceanography 28:283–295Google Scholar
  126. 126.
    Winkelmann D, Schafer C, Stein R, Mackensen A (2008) Terrigenous events and climate history of the Sophia Basin, Arctic Ocean. Geochem Geophys Geosyst 9:Q07023Google Scholar
  127. 127.
    Wollenburg JE, Kuhnt W, Mackensen A (2001) Changes in Arctic Ocean paleoproductivity and hydrography during the last 145 kyr: the benthic foraminiferal record. Paleoceanography 16:65–77Google Scholar
  128. 128.
    Xiao X, Fahl K, Stein R (2013) Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): indicators for organic-carbon sources and sea ice coverage. Quat Sci Rev 79:40–52Google Scholar
  129. 129.
    Xiao XT, Fahl K, Müller J, Stein R (2015) Sea-ice distribution in the modern Arctic Ocean: Biomarker records from trans-Arctic Ocean surface sediments. Geochim Cosmochim Acta 155:16–29Google Scholar
  130. 130.
    Yang S, Christensen JH (2012) Arctic sea ice reduction and European cold winters in CMIP5 climate change experiments. Geophys Res Lett 39:L20707Google Scholar
  131. 131.
    Yang H, Lohmann G, Wei W, Dima M, Ionita M, Liu J (2016) Intensification and poleward shift of subtropical western boundary currents in a warming climate. J Geophys Res Oceans 121:4928–4945Google Scholar
  132. 132.
    Zhuravleva A, Bauch HA, Spielhagen RF (2017) Atlantic water transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial. Global Planet Change 157:232–243Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Kremer
    • 1
    Email author
  • R. Stein
    • 1
  • K. Fahl
    • 1
  • H. Bauch
    • 1
  • A. Mackensen
    • 1
  • F. Niessen
    • 1
  1. 1.Alfred-Wegener-Institut Helmholtz-Zentrum fur Polar- und MeeresforschungBremerhavenGermany

Personalised recommendations