Performance evaluation of nanosilica-modified asphalt binder

  • Faheem Sadiq BhatEmail author
  • Mohammad Shafi Mir
Technical papers


Continuous efforts are being made to enhance the performance of the pavements for which various modifiers and additives are being utilized. Lately, emphasis has been given to the use of sustainable materials to be used in pavement construction. The paper explores the use of nanosilica, which can be manufactured from industrial and agricultural wastes, as an asphalt modifier and evaluates its effect on high-temperature properties of VG-10 binder. The paper investigates the rutting potential of nanosilica-modified binders by using different rheological approaches. Nanosilica was used in three concentrations (0.5%, 1% and 3%). It was found that adding nanosilica to asphalt binder improves its rutting resistance. Results of all the rheological approaches showed that resistance to permanent deformation increases with the addition of nanosilica. Nanosilica-modified binders have high resistance to oxidative ageing. Nanosilica-modified binders exhibited good storage stability at high temperatures.


Rutting resistance Superpave rutting parameter Shenoy’s parameter Complex modulus Phase angle ZSV LSV MSCR Nanosilica 


  1. 1.
    Little DN, Allen DH, Bhasin A (2018) Modeling and design of flexible pavements and materials. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Bonemazzi F, Braga V, Corrieri R, Giavarini C, Sartori F (1996) Characteristics of polymers and polymer-modified binders. Transp Res Rec J Transp Res Board 1535:36–47. CrossRefGoogle Scholar
  3. 3.
    Isacsson U, Xiaohu L (2000) Rheological characterization of styrene–butadiene–styrene copolymer modified bitumens. Constr Build Mater 11:23–32Google Scholar
  4. 4.
    Zhu J, Birgisson B, Kringos N (2014) Polymer modification of bitumen: advances and challenges. Eur Polym J 54:18–38. CrossRefGoogle Scholar
  5. 5.
    Munera JC, Ossa EA (2014) Polymer modified bitumen: optimization and selection. Mater Des 62:91–97. CrossRefGoogle Scholar
  6. 6.
    Teltayev B, Izmailova G, Bortolotti V, Spadafora A, Oliviero Rossi C, Amerbayev Y (2015) Polymer modified bitumen: rheological properties and structural characterization. Colloids Surf A Physicochem Eng Asp 480:390–397. CrossRefGoogle Scholar
  7. 7.
    Diab A, You Z (2017) Small and large strain rheological characterizations of polymer- and crumb rubber-modified asphalt binders. Constr Build Mater 144:168–177. CrossRefGoogle Scholar
  8. 8.
    Kim HH, Mazumder M, Lee SJ, Lee MS (2018) Characterization of recycled crumb rubber modified binders containing wax warm additives. J Traffic Transp Eng (Engl Ed) 5:197–206. CrossRefGoogle Scholar
  9. 9.
    Behnood A, Modiri Gharehveran M (2018) Morphology, rheology, and physical properties of polymer-modified asphalt binders. Eur Polym J 99:99. CrossRefGoogle Scholar
  10. 10.
    Airey GD (2002) Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Constr Build Mater 16:473–487. CrossRefGoogle Scholar
  11. 11.
    Airey GD (2003) Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel 82:1709–1719. CrossRefGoogle Scholar
  12. 12.
    Yildirim Y (2007) Polymer modified asphalt binders. Constr Build Mater 21:66–72. CrossRefGoogle Scholar
  13. 13.
    Tayfur S, Ozen H, Aksoy A (2007) Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Constr Build Mater 21:328–337. CrossRefGoogle Scholar
  14. 14.
    Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145:42–82. CrossRefGoogle Scholar
  15. 15.
    Wang T, Yi T, Yuzhen Z (2010) The compatibility of SBS-modified asphalt. Pet Sci Technol 28:764–772. CrossRefGoogle Scholar
  16. 16.
    Jasso M (2011) The mechanism of modification and properties of polymer modified asphalts. Scholar
  17. 17.
    Presti DL (2013) Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review. Constr Build Mater 49:863–881. CrossRefGoogle Scholar
  18. 18.
    Kelsall RW, Hamley IW, Geoghegan M (2005) Nanoscale science and technology. Wiley, Hoboken. CrossRefGoogle Scholar
  19. 19.
    Steyn WJ (2009) Potential applications of nanotechnology. J Transp Eng ASCE 135:764–772CrossRefGoogle Scholar
  20. 20.
    Steyn WJ (2011) Applications of nanotechnology in road, pp 49–83.
  21. 21.
    Teizer J, Venugopal M, Teizer W, Felkl J (2011) Nanotechnology and its impact on construction: bridging the gap between researchers and industry professionals. J Constr Eng Manag 138:594–604. CrossRefGoogle Scholar
  22. 22.
    Chen SJ, Zhang XN (2012) Mechanics and pavement properties research of nanomaterial modified asphalt. Adv Eng Forum 5:259–264. CrossRefGoogle Scholar
  23. 23.
    Yang J, Tighe S (2013) A review of advances of nanotechnology in asphalt mixtures. Procedia Soc Behav Sci 96:1269–1276. CrossRefGoogle Scholar
  24. 24.
    Fang C, Yu R, Liu S, Li Y (2013) Nanomaterials applied in asphalt modification: a review. J Mater Sci Technol 29:589–594. CrossRefGoogle Scholar
  25. 25.
    You Z (2013) Nanomaterials in asphalt pavements. Int J Pavement Res Technol 6:1–2. CrossRefGoogle Scholar
  26. 26.
    Faruqi M, Castillo L, Sai J (2014) State-of-the-art review of the applications of nanotechnology in pavement materials. J Civ Eng Res 5:59. CrossRefGoogle Scholar
  27. 27.
    Li R, Xiao F, Amirkhanian S, You Z, Huang J (2017) Developments of nano materials and technologies on asphalt materials—a review. Constr Build Mater 143:633–648. CrossRefGoogle Scholar
  28. 28.
    Mostafa AEA (2016) Examining the performance of hot mix asphalt using nano-materials. IOSR J Eng 06:25–34Google Scholar
  29. 29.
    Ezzat H, El-Badawy S, Gabr A, Zaki ESI, Breakah T (2016) Evaluation of asphalt binders modified with nanoclay and nanosilica. Procedia Eng 143:1260–1267. CrossRefGoogle Scholar
  30. 30.
    Shi X, Cai L, Xu W, Fan J, Wang X (2018) Effects of nano-silica and rock asphalt on rheological properties of modified bitumen. Constr Build Mater 161:705–714. CrossRefGoogle Scholar
  31. 31.
    Sun L, Xin X, Ren J (2016) Inorganic nanoparticle-modified asphalt with enhanced performance at high temperature. J Mater Civ Eng 29:04016227. CrossRefGoogle Scholar
  32. 32.
    Saltan M, Terzi S, Karahancer S (2017) Examination of hot mix asphalt and binder performance modified with nano silica. Constr Build Mater 156:976–984. CrossRefGoogle Scholar
  33. 33.
    Enieb M, Diab A (2017) Characteristics of asphalt binder and mixture containing nanosilica. Int J Pavement Res Technol 10:148–157. CrossRefGoogle Scholar
  34. 34.
    Sadeghnejad M, Shafabakhsh G (2017) Experimental study on the physical and rheological properties of bitumen modified with different nano materials (nano SiO2 & nano TiO2). Int J Nanosci Nanotechnol 13:253–263Google Scholar
  35. 35.
    Han L, Zheng M, Li J, Li Y, Zhu Y, Ma Q (2017) Effect of nano silica and pretreated rubber on the properties of terminal blend crumb rubber modified asphalt. Constr Build Mater 157:277–291. CrossRefGoogle Scholar
  36. 36.
    Nejad FM, Nazari H, Naderi K, Karimiyan Khosroshahi F, Hatefi Oskuei M (2017) Thermal and rheological properties of nanoparticle modified asphalt binder at low and intermediate temperature range. Pet Sci Technol 35:641–646. CrossRefGoogle Scholar
  37. 37.
    Sun L, Xin X, Ren J (2017) Asphalt modification using nano-materials and polymers composite considering high and low temperature performance. Constr Build Mater. CrossRefGoogle Scholar
  38. 38.
    Lv Q, Huang W, Xiao F (2017) Laboratory evaluation of self-healing properties of various modified asphalt. Constr Build Mater 136:192–201. CrossRefGoogle Scholar
  39. 39.
    Leiva-Villacorta F, Vargas-Nordcbeck A (2019) Optimum content of nano-silica to ensure proper performance of an asphalt binder. Road Mater Pavement Des 20:414–425. CrossRefGoogle Scholar
  40. 40.
    Anderson DA, Christensen DW, Bahia HU, Dongre R, Sharma MG, Antle CE, Button J (1994) Binder characterization and evaluation. Volume 3: physical characterization. In: SHRP-A-369, p 491Google Scholar
  41. 41.
    Bahia HU, Zhai H, Bonnetti K, Kose S (1999) Non-linear viscoelastic and fatigue properties of asphalt binders. In: Annual meeting of the association of Asphalt paving technologistsGoogle Scholar
  42. 42.
    Bahia HU, Zhai H, Zeng M, Hu Y, Turner P (2001) Development of binder specification parameters based on characterization of damage behavior. Proc Assoc Asph Paving Technol 70:442–470Google Scholar
  43. 43.
    Dongré R, D’Angelo J (1829) Refinement of superpave high-temperature binder specification based on pavement performance in the accelerated loading facility. Transp Res Rec J Transp Res Board 2003:39–46. CrossRefGoogle Scholar
  44. 44.
    Laukkanen OV et al (2015) Creep-recovery behavior of bituminous binders and its relation to asphalt mixture rutting. Mater Struct Constr 48:4039–4053. CrossRefGoogle Scholar
  45. 45.
    Domingos MDI, Faxina AL, Bernucci LLB (2017) Characterization of the rutting potential of modified asphalt binders and its correlation with the mixture’s rut resistance. Constr Build Mater 144:207–213. CrossRefGoogle Scholar
  46. 46.
    De Visscher J, Vanelstraete A (2009) Equiviscous temperature based on low shear viscosity: evaluation as binder indicator for rutting and critical discussion of the test procedure. In: Proceedings of the 7th international RILEM symposium-ATBM09 on advanced testing and characterization of bitumunious materialsGoogle Scholar
  47. 47.
    Morea F, Agnusdei JO, Zerbino R (2010) Comparison of methods for measuring zero shear viscosity in asphalts. Mater Struct Constr 43:499–507. CrossRefGoogle Scholar
  48. 48.
    Morea F, Zerbino R, Agnusdei J (2014) Wheel tracking rutting performance estimation based on bitumen low shear viscosity (LSV), loading and temperature conditions. Mater Struct Constr 47:683–692. CrossRefGoogle Scholar
  49. 49.
    Airey G, Zadeh BR, Collop A (2002) Linear viscoelastic limits of bituminous binders. J Assoc Asph Paving Technol 71:89–115Google Scholar
  50. 50.
    D’Angelo J, Reinke G, Bahia H, Wen H, Johnson CM, Marasteanu M (2010) Development in asphalt binder specifications. Transp Res Board. CrossRefGoogle Scholar
  51. 51.
    Tabatabaee N, Tabatabaee H (2010) Multiple stress creep and recovery and time sweep fatigue tests. Transp Res Rec J Transp Res Board 2180:67–74. CrossRefGoogle Scholar
  52. 52.
    Angelo JAD (2009) The relationship of the MSCR test to rutting. Road Mater Pavement Des 10:61–80. CrossRefGoogle Scholar
  53. 53.
    Shenoy A (2001) Refinement of the superpave specification parameter for performance grading of asphalt. J Mater Civ Eng 127:357–362Google Scholar
  54. 54.
    Rowe GM, D’Angelo JA, Sharrock MJ (2001) Use of the zero shear viscosity as a parameter for the high temperature binder specification parameter. J Mater Civ Eng 127:357–362Google Scholar
  55. 55.
    Anderson DA, Le Hir YM, Planche J, Martin D, Shenoy A (1810) Zero shear viscosity of asphalt binders. Transp Res Rec J Transp Res Board 2002:54–62. CrossRefGoogle Scholar
  56. 56.
    De Visscher J, Vanelstaete A, Road B (2003) Practical test methods for measuring the zero shear viscosity of bituminous binders. In: 6th RIMLM symposium PTEBM'03, pp 124–130Google Scholar
  57. 57.
    Morea F, Agnusdei JO, Zerbino R (2011) The use of asphalt low shear viscosity to predict permanent deformation performance of asphalt concrete. Mater Struct Constr 44:1241–1248. CrossRefGoogle Scholar
  58. 58.
    Sybilski D (1994) Relationship between absolute viscosity of polymer-modified bitumens and rutting resistance of pavement. Mater Struct 27:110–120. CrossRefGoogle Scholar
  59. 59.
    Sybilski D (1996) Zero-shear viscosity of bituminous binder and its relation to bituminous mixture’ s rutting resistance. J Transp Res Rec 1535:15–21CrossRefGoogle Scholar
  60. 60.
    Batista FA, Hofko B, De Visscher J, Tanghe T, da Costa MS (2017) Towards improved correlations between bitumen properties and rutting resistance of bituminous mixtures—FunDBitS literature review. In: IOP conference series: materials science and engineering. CrossRefGoogle Scholar
  61. 61.
    ASTM, D1754/D1754M-09 (2014) (Reapproved 2014) Standard test method for effects of heat and air on asphaltic materials (thin-film oven test) 97:1–7.
  62. 62.
    ASTM-D7175-15 (2017) Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer 1:1–16.
  63. 63.
    De Visscher J, Soenen H, Vanelstraete A, Redelius P (2004) A comparison of the zero shear viscosity from oscillation tests and the repeated creep test. In: Proceedings of 3rd Eurasphalt and Eurobitume congress, vol 2, pp 1501–1513Google Scholar
  64. 64.
    De Visscher J, Vanelstraete A (2004) Practical test methods for measuring the zero shear viscosity of bituminous binders. Mater Struct Constr 37:360–364. CrossRefGoogle Scholar
  65. 65.
    Santagata E, Baglieri O, Alam M, Dalmazzo D (2015) A novel procedure for the evaluation of anti-rutting potential of asphalt binders. Int J Pavement Eng 16:287–296. CrossRefGoogle Scholar
  66. 66.
    Morea F, Zerbino R, Agnusdei J (2013) Improvements on asphalt mixtures rutting performance characterization by the use of low shear viscosity. Mater Struct Constr 46:267–276. CrossRefGoogle Scholar
  67. 67.
    ASTM-D7405-15 (2015) Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer i:7–10.
  68. 68.
    ASTM D7173-14 (2005) Standard practice for determining the separation tendency of polymer from polymer modified asphalt. Annu B Am Soc Test Mater ASTM Stand 5–6.
  69. 69.
    AnwarParvez M, Al-AbdulWahhab HI, Shawabkeh RA, Hussein IA (2014) Asphalt modification using acid treated waste oil fly ash. Constr Build Mater 70:201–209. CrossRefGoogle Scholar
  70. 70.
    Airey G (1997) Rheological characteristics of polymer modified and aged bitumens. Doctoral dissertation, University of NottinghamGoogle Scholar
  71. 71.
    Phoohinkong W, Kitthawee U (2014) Low-cost and fast production of nano-silica from rice husk ash. Adv Mater Res 979:216–219. CrossRefGoogle Scholar
  72. 72.
    Brouwers A, Lázaro HJH (2010) Nano-silica production by a sustainable process ; application in building materials. In: 8th Fib PhD symposium in Kgs. Lyngby, Denmark, pp 1–6Google Scholar
  73. 73.
    Vijayalakshmi U, Vaibhav V, Chellappa M, Anjaneyulu U (2015) Green synthesis of silica nanoparticles and its corrosion resistance behavior on mild steel. J Indian Chem Soc 92:675–678Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Institute of TechnologySrinagarIndia
  2. 2.Department of Civil EngineeringNational Institute of TechnologySrinagarIndia

Personalised recommendations