Advertisement

Remediation of the saline soil of the Mostaganem region by electrokinetic technique

  • Faiza Klouche
  • Karim Bendani
  • Ahmed Benamar
  • Hanifi Missoum
  • Nadia Laredj
Technical Paper
  • 30 Downloads

Abstract

Soil salinization is a problem in many parts of the world, particularly in arid and semi-arid areas. Salinity continues to be a major form of land degradation and a significant environmental threat. The deleterious effects of salinity extend over a broad spectrum that includes productive farmland, ecosystems, river systems and infrastructure. This paper presents the experimental results of a laboratory-scale study (LCTPE—University of Mostaganem), to study the effects of electrokinetic treatment in salt remediation and removal in local saline soil in the Mostaganem region. The soil was subjected to a potential difference of 10 V, applying a continuous current between the electrodes inserted into the soil mass. After different periods of electrokinetic treatment, the properties of this soil were evaluated. The electric current gradually decreases with the operating time. The pH distribution after electrokinetic treatment showed a linear acid form at the anode and basic at the cathode. Experimental results reveal that the electrokinetic method (EK) is an innovative, emerging and potentially costly technique that has demonstrated considerable potential for an efficient removal of ionic species from fine-grained, low-permeability soils.

Keywords

Electrokinetic Electro-migration Remediation Salinity Silty soil pH 

References

  1. 1.
    Saidi D, Bissonnais YL, Duval O, Daoud Y, Halitim A (2004) Effet du sodium échangeable et de la concentration saline sur les propriétés physiques des sols de la plaine du Cheliff (Algérie). Étude et Gestion des Sols 11(2):81–92. http://www.afes.fr/publications/revue-etude-et-gestion-des-sols/volume-11-numero-2/
  2. 2.
    Bencherif K, Boutekrabt A, Fontaine J, Laruelle F, Dalpè Y, Lounès-Hadj Sahraoui A (2015) Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Sci Total Environ 533:488–494.  https://doi.org/10.1016/j.scitotenv.2015.07.007 CrossRefGoogle Scholar
  3. 3.
    Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(3):1017–1023.  https://doi.org/10.1093/jxb/erj108 CrossRefGoogle Scholar
  4. 4.
    Foncea C, Acevedo P, Olguin R (2005) Geotechnical characterization of saline soils. In: Proceedings of 16th international conference on soil mechanics and geotechnical engineering, Sept 2005, pp 505–506.  https://doi.org/10.3233/978-1-61499-656-9-503
  5. 5.
    Mermoud A (2006) Cours de physique du sol: Maîtrise de la salinité des sols. Ecole polytechnique fédérale de lausanne, 23p. https://echo.epfl.ch/wp-content/uploads/2018/07/08-Matrise-de-la-salinit-1.pdf
  6. 6.
    Oyediran IA, Olalusi DA (2017) Hydraulic conductivity and leachate removal rate of genetically different compacted clays. Innov Infrastruct Solut 2(46):1–14.  https://doi.org/10.1007/s41062-017-0097-0 CrossRefGoogle Scholar
  7. 7.
    Ugaz A, Puppala S, Gale RJ, Acar YB (1994) Electrokinetic soil processing: complicating features of electrokinetic remediation of soils and slurries: saturation effects and the role of the cathode electrolysis. Chem Eng Commun 129:183–200.  https://doi.org/10.1080/00986449408936258 CrossRefGoogle Scholar
  8. 8.
    West LJ, Stewart DI (1995) Effect of zeta potential on soil electrokinesis. In: Acar YB, DE Daniel (eds) Proceedings of geoenvironment 2000. Geotechnical special publication no. 46. ASCE, New York, pp 1535–1549Google Scholar
  9. 9.
    Pamukcu S (1997) Electro-chemical technologies for in situ restoration of contaminated subsurface soils. Electron J Geotech Eng 2:1–34. http://www.ejge.com/1997/JourTOC2.htm
  10. 10.
    Reddy KR, Xu CY, Chinthamreddy S (2001) Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis. J Hazard Mater 84:279–296.  https://doi.org/10.1016/S0304-3894(01)00237-0 CrossRefGoogle Scholar
  11. 11.
    Chou S, Cheng M, Yen S (2004) The enhanced removal of cadmium and lead from contaminated soils and the pH effect by electrochemical treatment. J Environ Sci Health A39(5):1213–1232.  https://doi.org/10.1081/ESE-120030327 CrossRefGoogle Scholar
  12. 12.
    Eid N, Slack D, Larson D (2000) Nitrate electromigration in sandy soil: closed system response. J Irrig Drain Eng 126:389–397.  https://doi.org/10.1061/(ASCE)0733-9437(2000)126:6(389) CrossRefGoogle Scholar
  13. 13.
    Eid N, Elshorbagy W, Larson D, Slack D (2000) Electro-migration of nitrate in sandy soil. J Hazard Mater 79:133–149.  https://doi.org/10.1016/S0304-3894(00)00238-7 CrossRefGoogle Scholar
  14. 14.
    Manokararajah K, Sri Ranjan R (2005) Electrokinetic denitrification of nitrates in a nitrate contaminated silty loam soil. Appl Eng Agric 21(3):541–549.  https://doi.org/10.13031/2013.18438 CrossRefGoogle Scholar
  15. 15.
    Manokararajah K, Sri Ranjan R (2005) Electrokinetic retention, migration and remediation of nitrates in silty loam soil under hydraulic gradients. Eng Geol 77(3–4):263–272.  https://doi.org/10.1016/j.enggeo.2004.07.017 CrossRefGoogle Scholar
  16. 16.
    Jia XH, Larson DL, Zimmt WS (2006) Effective nitrate control with electrokinetics in sand soil. Trans ASAE 49:803–809.  https://doi.org/10.13031/2013.20463 CrossRefGoogle Scholar
  17. 17.
    Ammami MT, Benamar A, Wang H, Bailleul C, Legras M, Le Derf F, Portet-Koltalo F (2013) Simultaneous electrokinetic removal of polycyclic aromatic hydrocarbons and metals from a sediment using mixed enhancing agents. Int J Environ Sci Technol 11(7):1801–1816.  https://doi.org/10.1007/s13762-013-0395-9 CrossRefGoogle Scholar
  18. 18.
    Yuan L, Li H, Xu X, Zhang J, Wang N, Yu H (2016) Electrokinetic remediation of heavy metals contaminated kaolin by a CNT-covered polyethylene terephthalate yarn cathode. Electrochim Acta 213:140–147.  https://doi.org/10.1016/j.electacta.2016.07.081 CrossRefGoogle Scholar
  19. 19.
    Cho J, Park S, Baek K (2010) Electrokinetic restoration of saline agricultural lands. J Appl Electrochem 40:1085–1093.  https://doi.org/10.1007/s10800-010-0072-3 CrossRefGoogle Scholar
  20. 20.
    Gholami M, Kebria DY, Mahmudi M (2014) Electrokinetic remediation of perchloroethylene-contaminated soil. Int J Environ Sci Technol 11:1433.  https://doi.org/10.1007/s13762-014-0555-6 CrossRefGoogle Scholar
  21. 21.
    Acar YB, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R (1995) Electrokinetic remediation: basics and technology status. J Hazard Mater 40:117–137.  https://doi.org/10.1016/0304-3894(94)00066-P CrossRefGoogle Scholar
  22. 22.
    Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. J Environ Sci Technol 27(2638):2647.  https://doi.org/10.1021/es00049a002 CrossRefGoogle Scholar
  23. 23.
    Zhou DM, Deng CF, Cang L, Alshawabkeh AN (2005) Electrokinetic remediation of a Cu–Zn contaminated red soil by controlling the voltage and conditioning catholyte pH. Chemosphere 61:519–527.  https://doi.org/10.1016/j.chemosphere.2005.02.055 CrossRefGoogle Scholar
  24. 24.
    Altaee A, Smith R, Mikhalovsky S (2008) The feasibility of decontamination of reduced saline sediments from copper using the electrokinetic process. J Environ Manag 88:1611–1618.  https://doi.org/10.1016/j.jenvman.2007.08.008 CrossRefGoogle Scholar
  25. 25.
    Kim DH, Jeon CS, Baek K, Ko SH, Yang JS (2009) Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte. J Hazard Mater 161(1):565–569.  https://doi.org/10.1016/j.jhazmat.2008.03.084 CrossRefGoogle Scholar
  26. 26.
    Baek K, Kim DH, Park SW, Ryu BG, Bajargal T, Yang JS (2009) Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. J Hazard Mater 161:457–462.  https://doi.org/10.1016/j.jhazmat.2008.03.127 CrossRefGoogle Scholar
  27. 27.
    Ryu BG, Park SW, Baek K, Yang JS (2009) Pulsed electrokinetic decontamination of agricultural lands around abandoned mines contaminated with heavy metals. Sep Sci Technol 44:2421–2436.  https://doi.org/10.1080/01496390902983778 CrossRefGoogle Scholar
  28. 28.
    Ammami MT, Portet-Koltalo F, Benamar A, Duclairoir-Poc C, Wang H, Le Derf F (2015) Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere 125:1–8.  https://doi.org/10.1016/j.chemosphere.2014.12.087 CrossRefGoogle Scholar
  29. 29.
    Zhang M, Guo S, Li F, Bo Wu (2017) Distribution of ion contents and microorganisms during the electro-bioremediation of petroleum-contaminated saline soil. J Environ Sci Health, Part A 52(12):1141–1149.  https://doi.org/10.1080/10934529.2017.1342499 CrossRefGoogle Scholar
  30. 30.
    Ait Ahmed O, Derriche Z, Kameche M, Bahmani A, Souli H, Dubujet P, Fleureau JM (2016) Electro-remediation of lead contaminated kaolinite: an electrokinetic treatment. Chem Eng Process 100:37–48.  https://doi.org/10.1016/j.cep.2015.12.002 CrossRefGoogle Scholar
  31. 31.
    Bahemmat M, Farahbakhsh M, Shabani F (2015) Compositional and metabolic quotient analysis of heavy metal contaminated soil after electroremediation. Environ Earth Sci 74:4639–4648.  https://doi.org/10.1007/s12665-015-4429-0 CrossRefGoogle Scholar
  32. 32.
    Mao X, Han FX, Shao X, Guo K, McComb J, Njemanze S, Arslan Z, Zhang Z (2016) The distribution and elevated solubility of lead, arsenic and cesium in contaminated paddy soil enhanced with the electrokinetic field. Int J Environ Sci Technol 13:1641.  https://doi.org/10.1007/s13762-016-1007-2 CrossRefGoogle Scholar
  33. 33.
    Malekzadeh M, Lovisa J, Sivakugan N (2016) An overview of electrokinetic consolidation of soils. Geotech Geol Eng 34:759–776.  https://doi.org/10.1007/s10706-016-0002-1 CrossRefGoogle Scholar
  34. 34.
    Faisal AAH, Sulaymon AH, Khaliefa QM (2018) A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. Int J Environ Sci Technol 15:1123–1138.  https://doi.org/10.1007/s13762-017-1466-0 CrossRefGoogle Scholar
  35. 35.
    Jia XH, Larson DL, Slack D, Walworth J (2005) Electrokinetic control of nitrate movement in soil. Eng Geol 77(3–4):273–283.  https://doi.org/10.1016/j.enggeo.2004.07.018 CrossRefGoogle Scholar
  36. 36.
    Jayasekera S, Hall S (2007) Modification of the properties of salt affected soils using electrochemical treatments. Geotech Geol Eng 25:1–10.  https://doi.org/10.1007/s10706-006-0001-8 CrossRefGoogle Scholar
  37. 37.
    Kim KJ, Cho JM, Baek K, Yang JS, Ko SH (2010) Electrokinetic removal of chloride and sodium from tidelands. J Appl Electrochem 40(6):1139–1144.  https://doi.org/10.1007/s10800-010-0082-1 CrossRefGoogle Scholar
  38. 38.
    Lee YJ, Choi JH, Lee HG, Ha TH (2012) In situ electrokinetic removal of salts from greenhouse soil using iron electrode. Sep Sci Technol 48(5):749–756.  https://doi.org/10.1080/01496395.2012.710290 CrossRefGoogle Scholar
  39. 39.
    Sadrekarimi J, Sadrekarimi A (2003) Voltage and duration effects of electroosmotic treatment of dispersive soils. In: Proceedings of the international conference on problematic soils, Nottingham, vol 1, pp 453–457Google Scholar
  40. 40.
    Acar YB, Gale RJ, Putnam G (1990) Electrochemical processing of soils: theory of pH gradient development by diffusion and linear convection. J Environ Sci Health, Part A 25(6):687–714.  https://doi.org/10.1080/1093452900937559 CrossRefGoogle Scholar
  41. 41.
    Pamukcu S, Wittle JK (1992) Electrokinetic removal of selected heavy metals from soil. Environ Prog 11(3):241–250.  https://doi.org/10.1002/ep.670110321 CrossRefGoogle Scholar
  42. 42.
    Eykholt GR, Daniel DE (1994) Impact of system chemistry on electro-osmosis in contaminated soil. J Geotech Eng ASCE 120(5):797–814.  https://doi.org/10.1061/(ASCE)07339410(1994)120:5(797) CrossRefGoogle Scholar
  43. 43.
    Jayasekera S (2004) Electroosmotic and hydraulic flow rates through kaolinite and bentonite clays. Aust Geomech Soc 79–86. https://australiangeomechanics.org/journals/volume-39-number-2-june-2004/
  44. 44.
    Reddy KR, Chinthamreddy S (2004) Enhanced electrokinetic remediation of heavy metals in glacial till soils using different electrolyte solutions. J Environ Eng ASCE 130(4):442.  https://doi.org/10.1061/(asce)07339372(2004)130:4(442) CrossRefGoogle Scholar
  45. 45.
    Cho JM, Kim KJ, Chung KY, Hyun SH, Baek K (2009) Restoration of saline soil in cultivated land using electrokinetic process. Sep Sci Technol 44:2371–2384.  https://doi.org/10.1080/01496390902983729 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.LCTPE LaboratoryUniversity Abdelhamid Ibn Badis of MostaganemMostaganemAlgeria
  2. 2.LOMC LaboratoryUniversity of HavreLe HavreFrance

Personalised recommendations