Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Metal–Organic Frameworks Towards Desulfurization of Fuels

  • 48 Accesses

Abstract

Petroleum is an essential source of energy for our daily life. However, crude oil contains various kinds of sulfur-containing compounds that will form sulfur oxides upon combustion and cause severe environmental problems. To reduce the environmental impact of petroleum energy, the desulfurization of fuels is necessary. Metal–organic frameworks (MOFs), an emerging class of porous materials, have shown great potential in a variety of applications. In this review, we summarize the use of MOFs in the desulfurization of fuels. The scope of this review includes MOFs and MOF-derived materials that have been applied in oxidative desulfurization and adsorptive desulfurization processes. We aim to provide an overview of the progress of MOFs in fuel desulfurization as well as shed light on the development of superior MOF-based materials in the field of desulfurization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Adapted with permission from Ref. [30] Copyright (2015) American Chemical Society

Fig. 4

Adapted with permission from Ref. [31] Copyright (2015) American Chemical Society

Fig. 5

Adapted from Ref. [33] Copyright (2017), with permission from Elsevier

Fig. 6

Adapted with permission from Ref. [34] Copyright (2017) American Chemical Society

Fig. 7

Adapted from Ref. [35] Copyright (2019), with permission from Elsevier

Fig. 8

Adapted with permission from Ref. [36] Copyright (2019) American Chemical Society

Fig. 9

Adapted and modified from Ref. [48] Copyright (2017), with permission from RSC publishing

Fig. 10

Adapted from Ref. [53] Copyright (2017), with permission from Wiley

Fig. 11

Adapted with permission from Ref. [54] Copyright (2017) American Chemical Society

Fig. 12

Adapted from Ref. [56] Copyright (2016), with permission from RSC publishing

Fig. 13

Adapted from Ref. [76] Copyright (2016), with permission from RSC publishing

Fig. 14

Adapted from Ref. [77] Copyright (2017), with permission from Elsevier

Fig. 15

Adapted from Ref. [83] Copyright (2016), with permission from RSC publishing

References

  1. 1.

    Chandra Srivastava V (2012) RSC Adv 2:759–783

  2. 2.

    Environmental Protection Agency (EPA) (2014) Fed Regist 79(81):23414–23886

  3. 3.

    Ali MF, Al-Malki A, El-Ali B, Martinie G, Siddiqui MN (2006) Fuel 85:1354–1363

  4. 4.

    Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T (2000) Energy Fuels 14:1232–1239

  5. 5.

    Kumar S, Srivastava VC, Badoni RP (2012) Fuel Process Technol 93:18–25

  6. 6.

    García-Gutiérrez JL, Fuentes GA, Hernández-Terán ME, García P, Murrieta-Guevara F, Jiménez-Cruz F (2008) Appl Catal A 334:366–373

  7. 7.

    Cedeño-Caero L, Gomez-Bernal H, Fraustro-Cuevas A, Guerra-Gomez HD, Cuevas-Garcia R (2008) Catal Today 133–135:244–254

  8. 8.

    Ania CO, Parra JB, Arenillas A, Rubiera F, Bandosz TJ, Pis JJ (2007) Appl Surf Sci 253:5899–5903

  9. 9.

    Ngamcharussrivichai C, Chatratananon C, Nuntang S, Prasassarakich P (2008) Fuel 87:2347–2351

  10. 10.

    Park JG, Ko CH, Yi KB, Park J-H, Han S-S, Cho S-H, Kim J-N (2008) Appl Catal B 81:244–250

  11. 11.

    Bezverkhyy I, Ryzhikov A, Gadacz G, Bellat J-P (2008) Catal Today 130:199–205

  12. 12.

    Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Chem Rev 112:724–781

  13. 13.

    Zhao Y (2016) Chem Mater 28:8079–8081

  14. 14.

    Bai Y, Dou Y, Xie L-H, Rutledge W, Li J-R, Zhou H-C (2016) Chem Soc Rev 45:2327–2367

  15. 15.

    Huang J, Yung KC, Li G, Wei Z, Meng Z (2019) IEEE Magn Lett 10:1–3

  16. 16.

    Gándara F, Perles J, Snejko N, Iglesias M, Gómez-Lor B, Gutiérrez-Puebla E, Monge MÁ (2006) Angew Chem Int Ed 45:7998–8001

  17. 17.

    Gándara F, Puebla EG, Iglesias M, Proserpio DM, Snejko N, Monge MÁ (2009) Chem Mater 21:655–661

  18. 18.

    Larabi C, Nielsen PK, Helveg S, Thieuleux C, Johansson FB, Brorson M, Quadrelli EA (2012) ACS Catal 2:695–700

  19. 19.

    Liu D, Zhu H, Zhao J, Pan L, Dai P, Gu X, Li L, Liu Y, Zhao X (2018) Materials 11:1067

  20. 20.

    Te M, Fairbridge C, Ring Z (2001) Appl Catal A 219:267–280

  21. 21.

    Wu N, Li B, Liu Z, Han C (2014) Catal Commun 46:156–160

  22. 22.

    Xiao J, Wu L, Wu Y, Liu B, Dai L, Li Z, Xia Q, Xi H (2014) Appl Energy 113:78–85

  23. 23.

    Marx S, Kleist W, Baiker A (2011) J Catal 281:76–87

  24. 24.

    Manna K, Ji P, Greene FX, Lin W (2016) J Am Chem Soc 138:7488–7491

  25. 25.

    Zhao M, Yuan K, Wang Y, Li G, Guo J, Gu L, Hu W, Zhao H, Tang Z (2016) Nature 539:76–80

  26. 26.

    Bernales V, Ortuño MA, Truhlar DG, Cramer CJ, Gagliardi L (2017) ACS Cent Sci 4:5–19

  27. 27.

    Yang D, Gates BC (2019) ACS Catal 9:1779–1798

  28. 28.

    Kim S-N, Kim J, Kim H-Y, Cho H-Y, Ahn W-S (2013) Catal Today 204:85–93

  29. 29.

    McNamara ND, Neumann GT, Masko ET, Urban JA, Hicks JC (2013) J Catal 305:217–226

  30. 30.

    McNamara ND, Hicks JC (2015) ACS Appl Mater Interfaces 7:5338–5346

  31. 31.

    Masoomi MY, Bagheri M, Morsali A (2015) Inorg Chem 54:11269–11275

  32. 32.

    Granadeiro CM, Ribeiro SO, Karmaoui M, Valença R, Ribeiro JC, de Castro B, Cunha-Silva L, Balula SS (2015) Chem Commun 51:13818–13821

  33. 33.

    Zhang X, Huang P, Liu A, Zhu M (2017) Fuel 209:417–423

  34. 34.

    Ye G, Zhang D, Li X, Leng K, Zhang W, Ma J, Sun Y, Xu W, Ma S (2017) ACS Appl Mater Interfaces 9:34937–34943

  35. 35.

    Hao L, Hurlock MJ, Li X, Ding G, Kriegsman KW, Guo X, Zhang Q (2019) Catal Today. https://doi.org/10.1016/j.cattod.2019.04.012

  36. 36.

    Zheng HQ, Zeng YN, Chen J, Lin RG, Zhuang WE, Cao R, Lin ZJ (2019) Inorg Chem 58:6983–6992

  37. 37.

    Hu X, Lu Y, Dai F, Liu C, Liu Y (2013) Microporous Mesoporous Mater 170:36–44

  38. 38.

    Ribeiro S, Barbosa ADS, Gomes AC, Pillinger M, Gonçalves IS, Cunha-Silva L, Balula SS (2013) Fuel Process Technol 116:350–357

  39. 39.

    Ribeiro S, Granadeiro CM, Silva P, Almeida Paz FA, de Biani FF, Cunha-Silva L, Balula SS (2013) Catal Sci Technol 3:2404–2414

  40. 40.

    Granadeiro CM, Barbosa ADS, Ribeiro S, Santos ICMS, de Castro B, Cunha-Silva L, Balula SS (2014) Catal Sci Technol 4:1416–1425

  41. 41.

    Julião D, Gomes AC, Pillinger M, Cunha-Silva L, de Castro B, Gonçalves IS, Balula SS (2015) Fuel Process Technol 131:78–86

  42. 42.

    Granadeiro CM, Nogueira LS, Julião D, Mirante F, Ananias D, Balula SS, Cunha-Silva L (2016) Catal Sci Technol 6:1515–1522

  43. 43.

    Julião D, Gomes AC, Pillinger M, Valença R, Ribeiro JC, de Castro B, Gonçalves IS, Cunha Silva L, Balula SS (2016) Eur J Inorg Chem 2016:5114–5122

  44. 44.

    Wang X-S, Huang Y-B, Lin Z-J, Cao R (2014) Dalton Trans 43:11950–11958

  45. 45.

    Hao X-L, Ma Y-Y, Zang H-Y, Wang Y-H, Li Y-G, Wang E-B (2015) Chem Eur J 21:3778–3784

  46. 46.

    Rafiee E, Nobakht N (2015) J Mol Catal A Chem 398:17–25

  47. 47.

    Zhang L, Wu S, Liu Y, Wang F, Han X, Shang H (2016) Appl Organomet Chem 30:684–690

  48. 48.

    Wang X-S, Li L, Liang J, Huang Y-B, Cao R (2017) ChemCatChem 9:971–979

  49. 49.

    Lin Z-J, Zheng H-Q, Chen J, Zhuang W-E, Lin Y-X, Su J-W, Huang Y-B, Cao R (2018) Inorg Chem 58:6983–6992

  50. 50.

    Peng Y-L, Liu J, Zhang H-F, Luo D, Li D (2018) Inorg Chem Front 5:1563–1569

  51. 51.

    Fazaeli R, Aliyan H, Moghadam M, Masoudinia M (2013) J Mol Catal A Chem 374–375:46–52

  52. 52.

    Wu J, Gao Y, Zhang W, Tan Y, Tang A, Men Y, Tang B (2015) Appl Organomet Chem 29:96–100

  53. 53.

    Ye G, Qi H, Li X, Leng K, Sun Y, Xu W (2017) ChemPhysChem 18:1903–1908

  54. 54.

    Bhadra BN, Song JY, Khan NA, Jhung SH (2017) ACS Appl Mater Interfaces 9:31192–31202

  55. 55.

    Lü H, Zhang Y, Jiang Z, Li C (2010) Green Chem 12:1954–1958

  56. 56.

    Gómez-Paricio A, Santiago-Portillo A, Navalón S, Concepción P, Alvaro M, Garcia H (2016) Green Chem 18:508–515

  57. 57.

    Cho K-B, Kang H, Woo J, Park YJ, Seo MS, Cho J, Nam W (2014) Inorg Chem 53:645–652

  58. 58.

    Ansari A, Jayapal P, Rajaraman G (2015) Angew Chem Int Ed 127:574–578

  59. 59.

    Cho J, Woo J, Nam W (2010) J Am Chem Soc 132:5958–5959

  60. 60.

    Liu Y, Liu S, Liu S, Liang D, Li S, Tang Q, Wang X, Miao J, Shi Z, Zheng Z (2013) ChemCatChem 5:3086–3091

  61. 61.

    Ding J-W, Wang R (2016) Chin Chem Lett 27:655–658

  62. 62.

    Li S-W, Gao R-M, Zhang R-L, Zhao J-S (2016) Fuel 184:18–27

  63. 63.

    Li S-W, Li J-R, Gao Y, Liang L-L, Zhang R-L, Zhao J-S (2017) Fuel 197:551–561

  64. 64.

    Tan P, Jiang Y, Sun L-B, Liu X-Q, AlBahily K, Ravon U, Vinu A (2018) J Mater Chem A 6:23978–24012

  65. 65.

    Tan P, Xue DM, Zhu J, Jiang Y, He QX, Hou Z, Liu XQ, Sun LB (2018) AIChE J 64:3786–3793

  66. 66.

    Shan J-H, Liu X-Q, Sun L-B, Cui R (2008) Energy Fuels 22:3955–3959

  67. 67.

    Shan J-H, Chen L, Sun L-B, Liu X-Q (2011) Energy Fuels 25:3093–3099

  68. 68.

    Wu L, Xiao J, Wu Y, Xian S, Miao G, Wang H, Li Z (2014) Langmuir 30:1080–1088

  69. 69.

    Li Y-X, Jiang W-J, Tan P, Liu X-Q, Zhang D-Y, Sun L-B (2015) J Phys Chem C 119:21969–21977

  70. 70.

    Van de Voorde B, Hezinová M, Lannoeye J, Vandekerkhove A, Marszalek B, Gil B, Beurroies I, Nachtigall P, De Vos D (2015) Phys Chem Chem Phys 17:10759–10766

  71. 71.

    Ahmed I, Jhung SH (2016) J Hazard Mater 301:259–276

  72. 72.

    Li Y, Wang L-J, Fan H-L, Shangguan J, Wang H, Mi J (2015) Energy Fuels 29:298–304

  73. 73.

    Tian F, Fu Z, Zhang H, Zhang J, Chen Y, Jia C (2015) Fuel 158:200–206

  74. 74.

    Wang T, Li X, Dai W, Fang Y, Huang H (2015) J Mater Chem A 3:21044–21050

  75. 75.

    Tang W, Gu J, Huang H, Liu D, Zhong C (2016) AIChE J 62:4491–4496

  76. 76.

    Xu W, Li G, Li W, Zhang H (2016) RSC Adv 6:37530–37534

  77. 77.

    Tan P, Xie X-Y, Liu X-Q, Pan T, Gu C, Chen P-F, Zhou J-Y, Pan Y, Sun L-B (2017) J Hazard Mater 321:344–352

  78. 78.

    Ban S, Long K, Xie J, Sun H, Zhou H (2018) Ind Eng Chem Res 57:2956–2966

  79. 79.

    Bhadra BN, Cho KH, Khan NA, Hong D-Y, Jhung SH (2015) J Phys Chem C 119:26620–26627

  80. 80.

    Khan NA, Hasan Z, Jhung SH (2014) Chem Eur J 20:376–380

  81. 81.

    Liu B, Peng Y, Chen Q (2016) Energy Fuels 30:5593–5600

  82. 82.

    Huang M, Chang G, Su Y, Xing H, Zhang Z, Yang Y, Ren Q, Bao Z, Chen B (2015) Chem Commun 51:12205–12207

  83. 83.

    Qin J-X, Tan P, Jiang Y, Liu X-Q, He Q-X, Sun L-B (2016) Green Chem 18:3210–3215

  84. 84.

    Aslam S, Subhan F, Yan Z, Etim UJ, Zeng J (2017) Chem Eng J 315:469–480

  85. 85.

    Liu X, Wang J, Li Q, Jiang S, Zhang T, Ji S (2014) J Rare Earths 32:189–194

  86. 86.

    Habimana F, Huo Y, Jiang S, Ji S (2016) Adsorption 22:1147–1155

  87. 87.

    Peralta D, Chaplais G, Simon-Masseron A, Barthelet K, Pirngruber GD (2012) Energy Fuels 26:4953–4960

  88. 88.

    Khan NA, Jhung SH (2015) Inorg Chem 54:11498–11504

  89. 89.

    Liu Y, Guo F, Hu J, Zhao S, Liu H, Hu Y (2015) Chem Eng Sci 137:170–177

  90. 90.

    Chen Z, Ling L, Wang B, Fan H, Shangguan J, Mi J (2016) Appl Surf Sci 387:483–490

  91. 91.

    Khan NA, Jun JW, Jeong JH, Jhung SH (2011) Chem Commun 47:1306–1308

  92. 92.

    Shi Y, Zhang X, Wang L, Liu G (2014) AIChE J 60:2747–2751

  93. 93.

    Khan NA, Bhadra BN, Jhung SH (2018) Chem Eng J 334:2215–2221

  94. 94.

    He W-W, Yang G-S, Tang Y-J, Li S-L, Zhang S-R, Su Z-M, Lan Y-Q (2015) Chem Eur J 21:9784–9789

  95. 95.

    Schnobrich JK, Lebel O, Cychosz KA, Dailly A, Wong-Foy AG, Matzger AJ (2010) J Am Chem Soc 132:13941–13948

  96. 96.

    Maes M, Trekels M, Boulhout M, Schouteden S, Vermoortele F, Alaerts L, Heurtaux D, Seo Y-K, Hwang YK, Chang J-S, Beurroies I, Denoyel R, Temst K, Vantomme A, Horcajada P, Serre C, De-Vos DE (2011) Angew Chem Int Ed 50:4210–4214

  97. 97.

    Pilloni M, Padella F, Ennas G, Lai S, Bellusci M, Rombi E, Sini F, Pentimalli M, Delitala C, Scano A, Cabras V, Ferino I (2015) Microporous Mesoporous Mater 213:14–21

  98. 98.

    Khan NA, Yoon JW, Chang J-S, Jhung SH (2016) Chem Commun 52:8667–8670

  99. 99.

    Samokhvalov A (2018) Coord Chem Rev 374:236–253

  100. 100.

    Tian F, Ru Q, Qiao C, Sun X, Jia C, Wang Y, Zhang Y (2018) J Energy Chem 32:8–14

  101. 101.

    Bagheri M, Masoomi MY, Morsali A (2017) J Hazard Mater 331:142–149

  102. 102.

    Zhang X-F, Wang Z, Feng Y, Zhong Y, Liao J, Wang Y, Yao J (2018) Fuel 234:256–262

Download references

Funding

Funding was provided by Washington State University “Startup”.

Author information

Correspondence to Qiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Metal-Organic Framework: From Design to Applications”; edited by Xian-He Bu, Michael J. Zaworotko, and Zhenjie Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, L., Hurlock, M.J., Ding, G. et al. Metal–Organic Frameworks Towards Desulfurization of Fuels. Top Curr Chem (Z) 378, 17 (2020). https://doi.org/10.1007/s41061-020-0280-1

Download citation

Keywords

  • Metal–organic frameworks
  • Oxidative desulfurization
  • Adsorptive desulfurization
  • Sulfur-containing compounds