Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

MOFs-Based Catalysts Supported Chemical Conversion of CO2

  • 221 Accesses


The dramatic increase in atmospheric carbon dioxide (CO2) concentrations has attracted human attention and many strategies about converting CO2 into high-value chemicals have been put forward. Metal–organic frameworks (MOFs), as a class of versatile materials, have been widely used in CO2 capture and chemical conversion, due to their unique porosity, multiple active centers and good stability and recyclability. Herein, we focused on the processes of chemical conversion of CO2 by MOFs-based catalysts, including the coupling reactions of epoxides, aziridines or alkyne molecules, CO2 hydrogenation, and other CO2 conversion reactions. The synthesized methods and high catalytic activity of MOFs-based materials were also analyzed systematically. Finally, a brief perspective on feasible strategies is presented to improve the catalytic activity of novel MOFs-based materials and explore the new CO2 conversion reactions.

This is a preview of subscription content, log in to check access.

Fig. 1

Adapted from Ref. [24]. Copyright 2009 Royal Society of Chemistry

Fig. 2

Reprinted with permission from Ref. [32]. Copyright 2015 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 3

Reprinted with permission from Ref. [48]. Copyright 2018 American Chemical Society

Fig. 4

Minor modification and permission reproduction from Ref. [80]. Copyright 2016 American Chemical Society

Fig. 5

Minor modification and permission reproduction from Ref. [82]. Copyright 2014 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 6

Adapted from Refs. [88] and [90]. Copyright 2016 and 2017 American Chemical Society

Fig. 7

Adapted from Ref. [95]. Copyright 2017 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 8

Adapted from Ref. [97]. Copyright 2015, Macmillan Publishers Limited

Fig. 9

Reprinted with permission from Ref. [115]. Copyright 2016 American Chemical Society

Fig. 10

Reprinted with permission from Ref. [123]. Copyright 2016 Royal Society of Chemistry

Fig. 11

Adapted from Ref. [134]. Copyright 2018 Partner Organisations

Fig. 12

Minor modification and permission reproduction from Ref. [158]. Copyright 2017 Royal Society of Chemistry

Fig. 13

Minor modification and permission reproduction from Ref. [178]. Copyright 2019 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 14

Reprinted with permission from Ref. [186]. Copyright 2016 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 15

Adapted from Ref. [187]. Copyright 2017 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 16

Reprinted with permission from Ref. [202]. Copyright 2019 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 17

Minor modification and permission reproduction from Ref. [211]. Copyright 2018 Royal Society of Chemistry

Fig. 18

Reprinted with permission from Ref. [226]. Copyright 2017 Royal Society of Chemistry and Chinese Chemical Society

Fig. 19

Minor modification and permission reproduction from Ref. [227]. Copyright 2017 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 20

Minor modification and permission reproduction from Ref. [232]. Copyright 2019 Royal Society of Chemistry

Fig. 21

Reprinted with permission from Ref. [234]. Copyright 2017 American Chemical Society

Fig. 22

Reprinted with permission from Ref. [240]. Copyright 2017 American Chemical Society

Fig. 23

Reprinted with permission from Ref. [242]. Copyright 2016 American Chemical Society

Fig. 24

Reprinted with permission from Ref. [251]. Copyright 2016 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim


  1. 1.

    Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM (2017) The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat Rev Mater 2:17045

  2. 2.

    Liu Q, Wu LP, Jackstell R, Beller M (2015) Using carbon dioxide as a building block in organic synthesis. Nat Commun 6:5933

  3. 3.

    Chu S (2009) Carbon capture and sequestration. Science 325:1599

  4. 4.

    Dong J, Cui P, Shi PF, Cheng P, Zhao B (2015) Ultrastrong alkali-resisting lanthanide-zeolites assembled by [Ln60] nanocages. J Am Chem Soc 137:15988–15991

  5. 5.

    Kossev K, Koseva N, Troev K (2003) Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide to oxiranes. J Mol Catal A Chem 194:29–37

  6. 6.

    Xie Y, Wang TT, Liu XH, Zou K, Deng WQ (2013) Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat Commun 4:1960

  7. 7.

    Cui GK, Wang JJ, Zhang SJ (2016) Active chemisorption sites in functionalized ionic liquids for carbon capture. Chem Soc Rev 45:4307–4339

  8. 8.

    Sun Q, Jin YY, Aguila B, Meng XJ, Ma SQ, Xiao FS (2017) Porous ionic polymers as a robust and efficient platform for capture and chemical fixation of atmospheric CO2. Chemsuschem 10:1160–1165

  9. 9.

    Feng X, Ding XS, Jiang DL (2012) Covalent organic frameworks. Chem Soc Rev 41:6010–6022

  10. 10.

    Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840–11876

  11. 11.

    Srivastava R, Srinivas D, Ratnasamy P (2005) Zeolite-based organic–inorganic hybrid catalysts for phosgene-free and solvent-free synthesis of cyclic carbonates and carbamates at mild conditions utilizing CO2. Appl Catal A Gen 289:128–134

  12. 12.

    Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K (1999) Mg-Al mixed oxides as highly active acid–base catalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc 134:18892–18895

  13. 13.

    Saptal VB, Bhanage BM (2016) N-heterocyclic olefins as robust organocatalyst for the chemical conversion of carbon dioxide to value-added chemicals. Chemsuschem 9:1980–1985

  14. 14.

    Li YD, Cui DX, Zhu JC, Huang P, Tian Z, Jia YY, Wang PA (2019) Bifunctional phase-transfer catalysts for fixation of CO2 with epoxides under ambient pressure. Green Chem 21:5231–5237

  15. 15.

    Sun Q, Aguila B, Perman J, Nguyen N, Ma SQ (2016) Flexibility matters: cooperative active sites in covalent organic framework and threaded ionic polymer. J Am Chem Soc 138:15790–15796

  16. 16.

    Zhi YF, Shao PP, Feng X, Xia H, Zhang YM, Shi Z, Mu Y, Liu XM (2018) Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO2 under mild conditions. J Mater Chem A 6:374–382

  17. 17.

    Cui P, Ma YG, Li HH, Zhao B, Li JR, Cheng P, Balbuena PB, Zhou HC (2012) Multipoint interactions enhanced CO2 uptake: a zeolite-like zinc-tetrazole framework with 24-nuclear zinc cages. J Am Chem Soc 121:4526–4527

  18. 18.

    Ding ML, Flaig RW, Jiang HL, Yaghi OM (2019) Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 48:2783–2828

  19. 19.

    Maina JW, Pozo-Gonzalo C, Kong LX, Schütz J, Hill M, Dumée LF (2017) Metal organic framework based catalysts for CO2 conversion. Mater Horiz 4:345–361

  20. 20.

    Olajire AA (2018) Synthesis chemistry of metal–organic frameworks for CO2 capture and conversion for sustainable energy future. Renew Sustain Energy Rev 92:570–607

  21. 21.

    He HM, Perman JA, Zhu GS, Ma SQ (2016) Metal–organic frameworks for CO2 chemical transformations. Small 12:6309–6324

  22. 22.

    Hou SL, Dong J, Zhao B (2019) Formation of C–X bonds in CO2 chemical fixation catalyzed by metal–organic frameworks. Adv Mater 2019:1806163

  23. 23.

    Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Organic carbonates as solvents in synthesis and catalysis. Chem Rev 110:4554–4581

  24. 24.

    Song JL, Zhang ZF, Hu SQ, Wu TB, Jiang T, Han BX (2009) MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem 11:1031–1036

  25. 25.

    Walton KS, Millward AR, Dubbeldam D, Frost H, Low JJ, Yaghi OM, Snurr RQ (2008) Understanding inflections and steps in carbon dioxide adsorption isotherms in metal–organic frameworks. J Am Chem Soc 130:406–407

  26. 26.

    Yang DA, Cho HY, Kim J, Yang ST, Ahn WS (2012) CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ Sci 5:6465–6473

  27. 27.

    Cho HY, Yang DA, Kim J, Jeong SY, Ahn WS (2012) CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catal Today 185:35–40

  28. 28.

    Xu K, Moeljadi AMP, Mai BK, Hirao H (2018) How does CO2 react with styrene oxide in Co-MOF-74 and Mg-MOF-74? Catalytic mechanisms proposed by QM/MM calculations. J Phys Chem C 122:503–514

  29. 29.

    Liu FL, Xu YW, Zhao LM, Zhang LL, Guo WY, Wang RM, Sun DF (2015) Porous barium-organic frameworks with highly efficient catalytic capacity and fluorescence sensing ability. J Mater Chem A 3:21545–21552

  30. 30.

    Li XY, Li YZ, Yang Y, Hou L, Wang YY, Zhu ZH (2017) Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes. Chem Commun 53:12972–12973

  31. 31.

    Li XY, Ma LN, Liu Y, Hou L, Wang YY, Zhu ZH (2018) Honeycomb metal–organic framework with Lewis acidic and basic bifunctional sites: selective adsorption and CO2 catalytic fixation. ACS Appl Mater Interfaces 10:10965–10973

  32. 32.

    Jiang ZR, Wang HW, Hu YL, Lu JL, Jiang HL (2015) Polar group and defect engineering in a metal–organic framework: synergistic promotion of carbon dioxide sorption and conversion. Chemsuschem 8:878–885

  33. 33.

    Seok HG, Kim DW, Yang JG, Kim M, Park DW (2016) Catalytic performance of microwave functionalized NH2-MIL-53 for cyclic carbonate synthesis from CO2 and epoxides. J Nanosci Nanotechnol 16:4612–4619

  34. 34.

    Senthilkumar S, Maru MS, Somani RS, Bajaj HC, Neogi S (2018) Unprecedented NH2-MIL-101(Al)/n-Bu4NBr system as solvent-free heterogeneous catalyst for efficient synthesis of cyclic carbonates via CO2 cycloaddition. Dalton Trans 47:418–428

  35. 35.

    Zhu JJ, Li PZ, Guo WH, Zhao YL, Zou RQ (2018) Titanium-based metal–organic frameworks for photocatalytic applications. Coord Chem Rev 359:80–101

  36. 36.

    Yuan S, Qin JS, Lollar CT, Zhou HC (2018) Stable metal–organic frameworks with group 4 metals: current status and trends. ACS Cent Sci 4:440–450

  37. 37.

    Verma S, Baig RBN, Nadagouda MN, Varma RS (2016) Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide. Green Chem 18:4855–4858

  38. 38.

    Shao D, Shi JB, Zhang JL, Tan XN, Luo T, Cheng XY, Zhang BX, Han BX (2018) Solvent impedes CO2 cycloaddition on metal–organic frameworks. Chem Asian J 13:386–389

  39. 39.

    Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042

  40. 40.

    Zalomaeva OV, Maksimchuk NV, Chibiryaev AM, Kovalenko KA, Fedin VP, Balzhinimaev BS (2013) Synthesis of cyclic carbonates from epoxides or olefins and CO2 catalyzed by metal–organic frameworks and quaternary ammonium salts. J Energy Chem 22:130–135

  41. 41.

    Zalomaeva OV, Chibiryaev AM, Kovalenko KA, Kholdeeva OA, Balzhinimaev BS, Fedin VP (2013) Cyclic carbonates synthesis from epoxides and CO2 over metal–organic framework Cr-MIL-101. J Catal 298:179–185

  42. 42.

    James BR, Boissonnault JA, Wong-Foy AG, Matzger AJ, Sanford MS (2018) Structure activity relationships in metal–organic framework catalysts for the continuous flow synthesis of propylene carbonate from CO2 and propylene oxide. RSC Adv 8:2132–2137

  43. 43.

    Lo SH, Raja DS, Chen CW, Kang YH, Chen JJ, Lin CH (2016) Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr). Dalton Trans 45:9565–9573

  44. 44.

    Taherimehr M, Voorde BVd, Wee LH, Martens JA, Vos DED, Pescarmona PP (2017) Strategies for enhancing the catalytic performance of metal–organic frameworks in the fixation of CO2 into cyclic carbonates. Chemsuschem 10:1283–1291

  45. 45.

    Ma DX, Li BY, Liu K, Zhang XL, Zou WJ, Yang YQ, Li GH, Shi Z, Feng SH (2015) Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. J Mater Chem A 3:23136–23142

  46. 46.

    Wang TT, Song XD, Luo QX, Yang XD, Chong SY, Zhang J, Ji M (2018) Acid–base bifunctional catalyst: carboxyl ionic liquid immobilized on MIL-101-NH2 for rapid synthesis of propylene carbonate from CO2 and propylene oxide under facile solvent-free conditions. Microporous Mesoporous Mater 267:84–92

  47. 47.

    Liu D, Li G, Liu HO (2018) Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition. Appl Surf Sci 428:218–225

  48. 48.

    Ding ML, Jiang HL (2018) Incorporation of imidazolium-based poly(ionic liquid)s into a metal–organic framework for CO2 capture and conversion. ACS Catal 8:3194–3201

  49. 49.

    Aguila B, Sun Q, Wang XL, O’Rourke E, Al-Enizi AM, Nafady A, Ma SQ (2018) Lower activation energy for catalytic reactions through host-guest cooperation within metal–organic frameworks. Angew Chem Int Ed 57:10107–10111

  50. 50.

    Sun YX, Huang HL, Vardhan H, Aguila B, Zhong CL, Perman JA, Al-Enizi AM, Nafady A, Ma SQ (2018) Facile approach to graft ionic liquid into MOF for improving the efficiency of CO2 chemical fixation. ACS Appl Mater Interfaces 10:27124–27130

  51. 51.

    Hu TD, Sun YW, Ding YH (2018) A quantum-chemical insight on chemical fixation carbon dioxide with epoxides co-catalyzed by MIL-101 and tetrabutylammonium bromide. J CO2 Util 28:200–206

  52. 52.

    Jiang W, Yang J, Liu YY, Song SY, Ma JF (2016) A porphyrin-based porous rtl metal–organic framework as an efficient catalyst for the cycloaddition of CO2 to epoxides. Chem Eur J 22:16991–16997

  53. 53.

    Kang XM, Wang WM, Yao LH, Ren HX, Zhao B (2018) Solvent-dependent variations of both structure and catalytic performance in three manganese coordination polymers. Dalton Trans 47:6986–6994

  54. 54.

    Sharma N, Dhankhar SS, Kumar S, Kumar TJD, Nagaraja CM (2018) Rational design of a 3D MnII-metal–organic framework based on a nonmetallated porphyrin linker for selective capture of CO2 and one-pot synthesis of styrene carbonates. Chem Eur J 24:16662–16669

  55. 55.

    Ugale B, Dhankhar SS, Nagaraja CM (2017) Interpenetrated metal–organic frameworks of cobalt(II): structural diversity, selective capture, and conversion of CO2. Cryst Growth Des 17:3295–3305

  56. 56.

    Wang HH, Hou L, Li YZ, Jiang CY, Wang YY, Zhu ZH (2017) Porous MOF with highly efficient selectivity and chemical conversion for CO2. ACS Appl Mater Interfaces 9:17969–17976

  57. 57.

    Lu BB, Yang J, Liu YY, Ma JF (2017) A polyoxovanadate-Resorcin[4]arene-based porous metal–organic framework as an efficient multifunctional catalyst for the cycloaddition of CO2 with epoxides and the selective oxidation of sulfides. Inorg Chem 56:11710–11720

  58. 58.

    Ji XH, Zhu NN, Ma JG, Cheng P (2018) Conversion of CO2 into cyclic carbonates by a Co(II) metal–organic framework and the improvement of catalytic activity via nanocrystallization. Dalton Trans 47:1768–1771

  59. 59.

    Song LL, Zhang XL, Chen C, Liu XL, Zhang N (2017) UTSA-16 as an efficient microporous catalyst for CO2 conversion to cyclic carbonates. Microporous Mesoporous Mater 241:36–42

  60. 60.

    Zhang XL, Chen ZJ, Yang XQ, Li MY, Chen C, Zhang N (2018) The fixation of carbon dioxide with epoxides catalyzed by cationexchanged metal–organic framework. Microporous Mesoporous Mater 258:55–61

  61. 61.

    Toyao T, Fujiwaki M, Miyahara K, Kim T, Horiuchi Y, Matsuoka M (2015) Design of zeolitic imidazolate framework derived nitrogen-doped nanoporous carbons containing metal species for carbon dioxide fixation reactions. Chemsuschem 8:3905–3912

  62. 62.

    Li YZ, Wang HH, Yang HY, Hou L, Wang YY, Zhu ZH (2018) An uncommon carboxyl-decorated metal–organic framework with selective gas adsorption and catalytic conversion of CO2. Chem Eur J 24:865–871

  63. 63.

    Ugale B, Dhankhar SS, Nagaraja CM (2016) Construction of 3-fold-interpenetrated three-dimensional metal–organic frameworks of Nickel(II) for highly efficient capture and conversion of carbon dioxide. Inorg Chem 55:9757–9766

  64. 64.

    Kurisingal JK, Babu R, Kim SG, Li YX, Chang JS, Cho SJ, Park DW (2018) Microwave-induced synthesis of a bimetallic charge-transfer metal organic framework: a promising host for the chemical fixation of CO2. Catal Sci Technol 8:591–600

  65. 65.

    Albo J, Vallejo D, Beobide G, Castillo O, Castaño P, Irabien A (2016) Copper-based metal–organic porous materials for CO2 electrocatalytic reduction to alcohols. Chemsuschem 10:1100–1109

  66. 66.

    Wu ZL, Wang CH, Zhao B, Dong J, Lu F, Wang WH, Wang WC, Wu GJ, Cui JZ, Cheng P (2016) A semi-conductive copper-organic framework with two types of photocatalytic activity. Angew Chem Int Ed 55:4938–4942

  67. 67.

    Macias EE, Ratnasamy P, Carreon MA (2012) Catalytic activity of metal organic framework Cu3(BTC)2 in the cycloaddition of CO2 to epichlorohydrin reaction. Catal Today 198:215–218

  68. 68.

    De D, Pal TK, Neogi S, Senthilkumar S, Das D, Gupta SS, Bharadwaj PK (2016) A Versatile CuII metal–organic framework exhibiting high gas storage capacity with selectivity for CO2: conversion of CO2 to cyclic carbonate and other catalytic abilities. Chem Eur J 22:3387–3396

  69. 69.

    Zhao M, Ou S, Wu CD (2017) Improvement of the CO2 capture capability of a metal–organic framework by encapsulating dye molecules inside the mesopore space. Cryst Growth Des 17:2688–2693

  70. 70.

    Li YN, Wang S, Zhou Y, Bai XJ, Song GS, Zhao XY, Wang TQ, Qi X, Zhang XM, Fu Y (2017) Fabrication of metal–organic framework and infinite coordination polymer nanosheets by the spray technique. Langmuir 33:1060–1065

  71. 71.

    Sharma V, De D, Saha R, Das R, Chattaraj PK, Bharadwaj PK (2017) A Cu(II)-MOF capable of fixing CO2 from air and showing high capacity H2 and CO2 adsorption. Chem Commun 53:13371–13374

  72. 72.

    Li JW, Ren YW, Qi CR, Jiang HF (2017) A chiral salen-based MOF catalytic material with high thermal, aqueous and chemical stabilities. Dalton Trans 46:7821–7832

  73. 73.

    Kathalikkattil AC, Kim DW, Tharun J, Soek HG, Roshan R, Park DW (2014) Aqueous-microwave synthesized carboxyl functional molecular ribbon coordination framework catalyst for the synthesis of cyclic carbonates from epoxides and CO2. Green Chem 16:1607–1616

  74. 74.

    Jeong GS, Kathalikkattil AC, Babu R, Chung YG, Park DW (2018) Cycloaddition of CO2 with epoxides by using an amino-acid–based Cu(II)-tryptophan MOF catalyst. Chin J Catal 39:63–70

  75. 75.

    Kurisingal JF, Rachuri Y, Gu YJ, Kim GH, Park DW (2019) Binary metal–organic frameworks: catalysts for the efficient solvent-free CO2 fixation reaction via cyclic carbonates synthesis. Appl Catal A Gen 571:1–11

  76. 76.

    Dutta G, Jana AK, Natarajan S (2018) Chemical fixation of CO2 and other heterogeneous catalytic studies by employing a layered Cu-porphyrin prepared through single-crystal to single-crystal exchange of a Zn analogue. Chem Asian J 13:66–72

  77. 77.

    Ai J, Min X, Gao CY, Tian HR, Dang S, Sun ZM (2017) A copper-phosphonate network as a high performance heterogeneous catalyst for the CO2 cycloaddition reactions and alcoholysis of epoxides. Dalton Trans 46:6756–6761

  78. 78.

    Chakraborty A, Achari A, Eswaramoorthy M, Maji TK (2016) MOF-aminoclay composites for superior CO2 capture, separation and enhanced catalytic activity in chemical fixation of CO2. Chem Commun 52:11378–11384

  79. 79.

    Gao CY, Tian HR, Li LJ, Dang S, Lan YQ, Sun ZM (2016) A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2. Chem Commun 52:11147–11150

  80. 80.

    Zhang GY, Wei GF, Liu ZP, Oliver SRJ, Fei HH (2016) A robust sulfonate-based metal–organic framework with permanent porosity for efficient CO2 capture and conversion. Chem Mater 28:6276–6281

  81. 81.

    Liang LF, Liu CP, Jiang FL, Chen QH, Zhang LJ, Xue H, Jiang HL, Qian JJ, Yuan DQ, Hong MC (2017) Carbon dioxide capture and conversion by an acid–base resistant metal–organic framework. Nat Commun 8:1233

  82. 82.

    Gao WY, Chen Y, Niu YH, Williams K, Cash L, Perez PJ, Wojtas L, Cai JF, Chen YS, Ma SQ (2014) crystal engineering of an nbo topology metal–organic framework for chemical fixation of CO2 under ambient conditions. Angew Chem Int Ed 53:2615–2619

  83. 83.

    Gao WY, Wojas L, Ma SQ (2014) A porous metal-metalloporphyrin framework featuring high-density active sites for chemical fixation of CO2 under ambient conditions. Chem Commun 50:5316–5318

  84. 84.

    Verma G, Kumar S, Pham T, Niu Z, Wojas L, Perman JA, Chen YS, Ma SQ (2017) Partially interpenetrated nbo topology metal–organic framework exhibiting selective gas adsorption. Cryst Growth Des 17:2711–2717

  85. 85.

    Perman JA, Chen M, Mikhail AA, Niu Z, Ma SQ (2017) Acid–base directed supramolecular isomers of isophthalate based MOFs for CO2 adsorption and transformation. CrystEngComm 19:4171–4174

  86. 86.

    He HM, Sun Q, Gao WY, Perman JA, Sun FX, Zhu GS, Aguila B, Forrest K, Space B, Ma SQ (2018) A stable metal–organic framework featuring a local buffer environment for carbon dioxide fixation. Angew Chem Int Ed 57:4657–4662

  87. 87.

    Han XG, Wang XJ, Li PZ, Zou RQ, Li MH, Zhao YL (2015) Controlled synthesis of concave cuboctahedral nitrogen-rich metal–organic framework nanoparticles showing enhanced catalytic activation of epoxides with carbon dioxide. CrystEngComm 17:8596–8601

  88. 88.

    Li PZ, Wang XJ, Liu J, Lim JS, Zou RQ, Zhao YL (2016) A triazole-containing metal–organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion. J Am Chem Soc 138:2142–2145

  89. 89.

    Li PZ, Wang XJ, Liu J, Liang J, Chen JYJ, Zhao YL (2017) Two metal–organic frameworks sharing the same basic framework show distinct interpenetration degrees and different performances in CO2 catalytic conversion. CrystEngComm 19:4157–4161

  90. 90.

    Li PZ, Wang XJ, Liu J, Phang HS, Li YX, Zhao YL (2017) Highly effective carbon fixation via catalytic conversion of CO2 by an acylamide-containing metal–organic framework. Chem Mater 29:9256–9261

  91. 91.

    Park KS, Ni Z, Côté AP, Choi JY, Huang RD, Uribe-Romo FJ, Chas HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103:10186–10191

  92. 92.

    Miralda CM, Macias EE, Zhu MQ, Ratnasamy P, Carreon MA (2012) Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal 2:180–183

  93. 93.

    Kim D, Kim DW, Buyukcakir O, Kim MK, Polychronopoulou K, Coskun A (2017) Highly hydrophobic ZIF-8/carbon nitride foam with hierarchical porosity for oil capture and chemical fixation of CO2. Adv Funct Mater 27:1700706

  94. 94.

    Kim MK, Kim D, Seo JY, Buyukcakir O, Coskun A (2017) Nanostructured ZnO as a structural template for the growth of ZIF-8 with tunable hierarchical porosity for CO2 conversion. CrystEngComm 19:4147–4151

  95. 95.

    Ding ML, Chen S, Liu XQ, Sun LB, Lu JL, Jiang HL (2017) Metal–organic framework-templated catalyst: synergy in multiple sites for catalytic CO2 fixation. Chemsuschem 10:1898–1903

  96. 96.

    Tang L, Zhang SB, Wu QL, Wang XR, Wu H, Jiang ZY (2018) Heterobimetallic metal–organic framework nanocages as highly efficient catalysts for CO2 conversion under mild conditions. J Mater Chem A 6:2964–2973

  97. 97.

    Han QX, Qi B, Ren WM, He C, Niu JY, Duan CY (2015) Polyoxometalate-based homochiral metal–organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins. Nat Commun 6:10007

  98. 98.

    Zou RY, Li PZ, Zeng YF, Liu J, Zhao R, Duan H, Luo Z, Wang JG, Zou RQ, Zhao YL (2016) Bimetallic metal–organic frameworks: probing the Lewis acid site for CO2 conversion. Small 12:2334

  99. 99.

    Chen DP, Luo R, Li MY, Wen MQ, Li Y, Chen C, Zhang N (2017) Salen(Co(III)) imprisoned within pores of a metal–organic framework by post-synthetic modification and its asymmetric catalysis for CO2 fixation at room temperature. Chem Commun 53:10930–10933

  100. 100.

    Huang XQ, Chen YF, Lin ZG, Ren XQ, Song YN, Xu ZZ, Dong XM, Li XG, Hu CW, Wang B (2014) Zn-BTC MOFs with active metal sites synthesized via a structure-directing approach for highly efficient carbon conversion. Chem Commun 50:2624–2627

  101. 101.

    Kathalikkattil AC, Babu R, Roshan RK, Lee H, Kim H, Tharun J, Suresh E, Park DW (2015) An lcy-topology amino acid MOF as eco-friendly catalyst for cyclic carbonate synthesis from CO2: structure-DFT corroborated study. J Mater Chem A 3:22636–22647

  102. 102.

    Gao WY, Tsai CY, Wojtas L, Thiounn T, Lin CC, Ma SQ (2016) Interpenetrating metal-metalloporphyrin framework for selective CO2 uptake and chemical transformation of CO2. Inorg Chem 55:7291–7294

  103. 103.

    Gao CY, Ai J, Tian HR, Wu D, Sun ZM (2017) An ultrastable zirconium-phosphonate framework as bifunctional catalyst for highly active CO2 chemical transformation. Chem Commun 53:1293–1296

  104. 104.

    Song TQ, Dong J, Gao HL, Cui JZ, Zhao B (2017) A unique zinc-organic framework constructed through in situ ligand synthesis for conversion of CO2 under mild conditions and as a luminescence sensor for Cr2O7 2−/CrO4 2−. Dalton Trans 46:13862–13868

  105. 105.

    Shi Y, Song TQ, Cao CS, Zhao B (2018) A two-fold interpenetrated zinc-organic framework: luminescence detection of CrO4 2−/Cr2O7 2− and chemical conversion of CO2. CrystEngComm 20:6040–6045

  106. 106.

    Chen J, Zhong MM, Tao L, Liu LN, Jayakumar S, Li CZ, Li H, Yang QH (2018) The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO2 cycloaddition reaction. Green Chem 20:903–911

  107. 107.

    Zhou HF, Liu B, Hou L, Zhang WY, Wang YY (2018) Rational construction of a stable Zn4O-based MOF for highly efficient CO2 capture and conversion. Chem Commun 54:456–459

  108. 108.

    Qiao WZ, Song TQ, Zhao B (2019) [Zn4O] Cluster-based metal–organic frameworks as catalysts for conversion of CO2. Chin J Chem 37:474–478

  109. 109.

    Kumar S, Verma G, Gao WY, Niu Z, Wojtas L, Ma SQ (2016) Anionic metal–organic framework for selective dye removal and CO2 fixation. Eur J Inorg Chem 2016:4373–4377

  110. 110.

    Babu R, Kathalikkattil AC, Roshan R, Jose Tharun, Kim DW, Park DW (2016) Dual-porous metal organic framework for room temperature CO2 fixation via cyclic carbonate synthesis. Green Chem 18:232–242

  111. 111.

    Verma A, Dinesh De, Tomar K, Bharadwaj PK (2017) An amine functionalized metal–organic framework as an effective catalyst for conversion of CO2 and Biginelli reactions. Inorg Chem 56:9765–9771

  112. 112.

    Zhao D, Liu XH, Guo JH, Xu HJ, Zhao Y, Lu Y, Sun WY (2018) Porous metal–organic frameworks with chelating multiamine sites for selective adsorption and chemical conversion of carbon dioxide. Inorg Chem 57:2695–2704

  113. 113.

    Patel P, Parmar B, Kureshy RI, Khan NH, Suresh E (2018) Amine-functionalized Zn(II) MOF as an efficient multifunctional catalyst for CO2 utilization and sulfoxidation reaction. Dalton Trans 47:8041–8805

  114. 114.

    Lan JW, Liu MS, Lu XY, Zhang X, Sun JM (2018) Novel 3D nitrogen-rich metal organic framework for highly efficient CO2 adsorption and catalytic conversion to cyclic carbonates under ambient temperature. ACS Sustain Chem Eng 6:8727–8735

  115. 115.

    Guo XY, Zhou Z, Chen C, Bai JF, He C, Duan CY (2016) New rht-type metal–organic frameworks decorated with acylamide groups for efficient carbon dioxide capture and chemical fixation from raw power plant flue gas. ACS Appl Mater Interfaces 8:31746–31756

  116. 116.

    Song LL, Chen C, Chen XB, Zhang N (2016) Isomorphic MOFs functionalized by free-standing acylamide and organic groups serving as self-supported catalysts for the CO2 cycloaddition reaction. New J Chem 40:2904–2909

  117. 117.

    Babu R, Roshan R, Kathalikkattil AC, Kim DW, Park DW (2016) Rapid, microwave-assisted synthesis of cubic, three-dimensional, highly porous MOF-205 for room temperature CO2 fixation via cyclic carbonate synthesis. ACS Appl Mater Interfaces 8:33723–33731

  118. 118.

    Babu R, Kim SH, Kathalikkattil AC, Kuruppathpatambil RR, Kim DW, Cho SJ, Park DW (2017) Aqueous microwave-assisted synthesis of non-interpenetrated metal–organic framework for room temperature cycloaddition of CO2 and epoxides. Appl Catal A Gen 544:126–136

  119. 119.

    Gao XX, Liu MS, Lan JW, Liang L, Zhang X, Sun JM (2017) Lewis acid–base bifunctional crystals with a three-dimensional framework for selective coupling of CO2 and epoxides under mild and solvent-free conditions. Cryst Growth Des 17:51–57

  120. 120.

    Patel P, Parmar B, Kureshy RI, Khan N, Suresh E (2018) Efficient solvent-free carbon dioxide fixation reactions with epoxides under mild conditions by mixed-ligand Zinc(II) metal–organic frameworks. ChemCatChem 10:2401–2408

  121. 121.

    Li YX, Zhang X, Xu P, Jiang ZM, Sun JM (2019) The design of a novel and resistant Zn(PZDC)(ATZ) MOF catalyst for the chemical fixation of CO2 under solvent-free conditions. Inorg Chem Front 6:317–325

  122. 122.

    Han YH, Zhou ZY, Tian CB, Du SW (2016) A dual-walled cage MOF as an efficient heterogeneous catalyst for the conversion of CO2 under mild and co-catalyst free conditions. Green Chem 18:4086–4091

  123. 123.

    Tharun J, Bhin KM, Roshan R, Kim DW, Kathalikkattil AC, Babu R, Ahn HY, Won YS, Park DW (2016) Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chem 18:2479–2487

  124. 124.

    Lu BB, Jiang W, Yang J, Liu YY, Ma JF (2017) Resorcin[4]arene-based microporous metal–organic framework as an efficient catalyst for CO2 cycloaddition with epoxides and highly selective luminescent sensing of Cr2O7 2−. ACS Appl Mater Interfaces 9:39441–39449

  125. 125.

    Ren YW, Cheng XF, Yang SR, Qi CR, Jiang HF, Mao QP (2013) A chiral mixed metal–organic framework based on a Ni(saldpen) metalloligand: synthesis, characterization and catalytic performances. Dalton Trans 42:9930–9937

  126. 126.

    Ren YW, Shi YC, Chen JX, Yang SR, Qi CR, Jiang HF (2013) Ni(salphen)-based metal–organic framework for the synthesis of cyclic carbonates by cycloaddition of CO2 to epoxides. RSC Adv 3:2167–2170

  127. 127.

    Li JW, Fan YM, Ren YM, Liao JH, Qi CR, Jiang HF (2018) Development of isostructural porphyrin-salen chiral metal–organic frameworks through postsynthetic metalation based on single-crystal to single-crystal transformation. Inorg Chem 57:1203–1212

  128. 128.

    Gómez-Lor B, Gutiérrez-Puebla E, Iglesias M, Monge MA, Ruiz-Valero C, Snejko N (2005) Novel 2D and 3D indium metal–organic frameworks: topology and catalytic properties. Chem Mater 17:2568–2573

  129. 129.

    Bu F, Lin QP, Zhai QG, Bu XH, Feng PY (2015) Charge-tunable indium-organic frameworks built from cationic, anionic, and neutral building blocks. Dalton Trans 44:16671–16674

  130. 130.

    Tristan Lescouet, Chizallet C, Farrusseng D (2012) The origin of the activity of amine-functionalized metal–organic frameworks in the catalytic synthesis of cyclic carbonates from epoxide and CO2. ChemCatChem 4:1725–1728

  131. 131.

    Xu L, Zhai MK, Lu XC, Du HB (2016) A robust indium-porphyrin framework for CO2 capture and chemical transformation. Dalton Trans 45:18730–18736

  132. 132.

    Liu L, Wang SM, Han ZB, Ding ML, Yuan DQ, Jiang HL (2016) Exceptionally robust in-based metal–organic framework for highly efficient carbon dioxide capture and conversion. Inorg Chem 55:3558–3565

  133. 133.

    Li YH, Wang SL, Su YC, Ko BT, Tsai CY, Lin CH (2018) Microporous 2D indium metal–organic frameworks for selective CO2 capture and their application in the catalytic CO2-cycloaddition of epoxides. Dalton Trans 47:9474–9481

  134. 134.

    Hou SL, Dong J, Jiao ZH, Jiang XL, Yang XP, Zhao B (2018) Trace water accelerating the CO2 cycloaddition reaction catalyzed by an indium-organic framework. Inorg Chem Front 5:1694–1699

  135. 135.

    Yuan Y, Li JT, Sun XD, Li GH, Liu YL, Verma G, Ma SQ (2019) Indium-organic frameworks based on dual secondary building units featuring halogen-decorated channels for highly effective CO2 fixation. Chem Mater 31:1084–1091

  136. 136.

    Babu R, Roshan R, Gim Y, Jang YH, Kurisingal JF, Kim DW, Park DW (2017) Inverse relationship of dimensionality and catalytic activity in CO2 transformation: a systematic investigation by comparing multidimensional metal–organic frameworks. J Mater Chem A 5:15961–15969

  137. 137.

    Babu R, Kurisingal JF, Chang JS, Park DW (2018) Bifunctional pyridinium-based ionic-liquid-immobilized diindium tris(diphenic acid) bis(1,10-phenanthroline) for CO2 fixation. Chemsuschem 11:924–932

  138. 138.

    García-García P, Corma A (2018) Hf-based metal–organic frameworks in heterogeneous catalysis. Isr J Chem 58:1062–1074

  139. 139.

    Bai Y, Dou YB, Xie LH, Rutledge W, Li JR, Zhou HC (2016) Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45:2327–2367

  140. 140.

    Beyzavi MH, Klet RC, Tussupbayev S, Borycz J, Vermeulen NA, Cramer CJ, Stoddart JF, Hupp JT, Farha OK (2014) A hafnium-based metal–organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J Am Chem Soc 136:15861–15864

  141. 141.

    Zheng J, Wu MY, Jiang FL, Su WP, Hong MC (2015) Stable porphyrin Zr and Hf metal–organic frameworks featuring 2.5 nm cages: high surface areas. SCSC transformations and catalyses. Chem Sci 6:3466–3470

  142. 142.

    He T, Ni B, Xu XB, Li HY, Lin HF, Yuan WJ, Luo J, Hu WP, Wang X (2017) Competitive coordination strategy to finely tune pore environment of Zirconium-based metal–organic frameworks. ACS Appl Mater Interfaces 9:22732–22738

  143. 143.

    Demir S, Usta S, Tamar H, Ulusoy M (2016) Solvent free utilization and selective coupling of epichlorohydrin with carbon dioxide over zirconium metal–organic frameworks. Microporous Mesoporous Mater 244:251–257

  144. 144.

    Konstantin Epp, Semrau AL, Cokoja M, Fischer RA (2018) Dual site Lewis-acid metal–organic framework catalysts for CO2 fixation: counteracting effects of node connectivity, defects and linker metalation. ChemCatChem 10:3506–3512

  145. 145.

    Nguyen PTK, Nguyen HTD, Nguyen HN, Trickett CA, Ton QT, Gutiérrez-Puebla E, Monge MA, Cordova KE, Gándara F (2018) New metal–organic frameworks for chemical fixation of CO2. ACS Appl Mater Interfaces 10:733–744

  146. 146.

    Zhu J, Usov PM, Xu WQ, Celis-Salazar PJ, Lin SY, Kessinger MC, Landaverde-Alvarado C, Cai M, May AM, Slebodnick C, Zhu DR, Senanayake SD, Morris AJ (2018) A new class of metal-cyclam-based zirconium metal–organic frameworks for CO2 adsorption and chemical fixation. J Am Chem Soc 140:993–1003

  147. 147.

    Yuan S, Zou LF, Li HX, Chen YP, Qin JS, Zhang Q, Lu WG, Hall MB, Zhou HC (2016) Flexible zirconium metal–organic frameworks as bioinspired switchable catalysts. Angew Chem Int Ed 55:10776–10780

  148. 148.

    Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

  149. 149.

    Silva CG, Luz I, Xamena FXL, Corma A, García H (2010) Water stable Zr-benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chem Eur J 16:11133–11138

  150. 150.

    Valekar AH, Cho KH, Chitale SK, Hong DY, Cha GY, Lee UH, Hwang DW, Serre C, Chang JS, Hwang YK (2016) Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal–organic frameworks. Green Chem 18:4542–4552

  151. 151.

    Vermoortele F, Bueken B, Bars GL, Voorde BV, Vandichel M, Houthoofd K, Vimont A, Daturi M, Waroquier M, Speybroeck VV, Kirschhock C, Vos DED (2013) Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66(Zr). J Am Chem Soc 135:11465–11468

  152. 152.

    Dhakshinamoorthy A, Santiago-Portillo A, Asiri AM, Garcia H (2019) Engineering UiO-66 metal organic framework for heterogeneous catalysis. ChemCatChem 11:899–923

  153. 153.

    Kim J, Kim SN, Jang HG, Seo G, Ahn WS (2013) CO2 cycloaddition of styrene oxide over MOF catalysts. Appl Catal A Gen 453:175–180

  154. 154.

    Kim SN, Lee YR, Hong SH, Jang MS, Ahn WS (2015) Pilot-scale synthesis of a zirconium-benzenedicarboxylate UiO-66 for CO2 adsorption and catalysis. Catal Today 245:54–60

  155. 155.

    Liu LP, Zhang JY, Fang HB, Chen LP, Su CY (2016) Metal–organic gel material based on UiO-66-NH2 nanoparticles for improved adsorption and conversion of carbon dioxide. Chem Asian J 11:2278–2283

  156. 156.

    Noh J, Kim Y, Park H, Lee J, Yoon M, Park MH, Kim Y, Kim M (2016) Functional group effects on a metal–organic framework catalyst for CO2 cycloaddition. J Ind Eng Chem 64:478–483

  157. 157.

    Cheng XY, Zhang BX, Shi JB, Zhang JL, Zheng LR, Zhang J, Shao D, Tan XN, Han BX, Yang GY (2018) Tin(IV) sulfide greatly improves the catalytic performance of UiO-66 for carbon dioxide cycloaddition. ChemCatChem 10:2945–2948

  158. 158.

    Liang J, Chen RP, Wang XY, Liu TT, Wang XS, Huang YB, Cao R (2017) Postsynthetic ionization of an imidazolecontaining metal–organic framework for the cycloaddition of carbon dioxide and epoxides. Chem Sci 8:1570–1575

  159. 159.

    Liang J, Xie YQ, Wu Q, Wang XY, Liu TT, Li HF, Hunag YB, Cao R (2018) Zinc porphyrin/imidazolium integrated multivariate zirconium metal–organic frameworks for transformation of CO2 into cyclic carbonates. Inorg Chem 57:2584–2593

  160. 160.

    Liang J, Xie YQ, Wang XY, Wu Q, Liu TT, Hunag YB, Cao R (2018) An imidazolium-functionalized mesoporous cationic metal–organic framework for cooperative CO2 fixation into cyclic carbonate. Chem Commun 54:342–345

  161. 161.

    Ding LG, Yao BJ, Jiang WL, Li TJ, Fu QJ, Li YA, Liu ZH, Ma JP, Dong YB (2017) Bifunctional imidazolium-based ionic liquid decorated UiO-67 type MOF for selective CO2 adsorption and catalytic property for CO2 cycloaddition with epoxides. Inorg Chem 56:2337–2344

  162. 162.

    Yao BJ, Ding LG, Li F, Li JT, Fu QJ, Ban YJ, Guo A, Dong YB (2017) Chemically cross-linked MOF membrane generated from imidazolium-based ionic liquid-decorated UiO-66 type NMOF and its application toward CO2 separation and conversion. ACS Appl Mater Interfaces 9:38919–38930

  163. 163.

    Kurisingal JF, Rachuri Y, Pillai RS, Gu YJ, Choe Y, Park DW (2019) Ionic-liquid-functionalized UiO-66 framework: an experimental and theoretical study on the cycloaddition of CO2 and epoxides. Chemsuschem 12:1033–1042

  164. 164.

    Liu B, Wu WP, Hou L, Wang YY (2014) Four uncommon nanocage-based Ln-MOFs: highly selective luminescent sensing for Cu2+ ions and selective CO2 capture. Chem Commun 50:8731–8734

  165. 165.

    Hou SL, Dong J, Tang MH, Jiang XL, Jiao ZH, Zhao B (2019) Triple-interpenetrated lanthanide-organic framework as dual wave bands self-calibrated pH luminescent probe. Anal Chem 91:5455–5460

  166. 166.

    Yang AF, Hou SL, Shi Y, Yang GL, Qin DB, Zhao B (2019) Stable lanthanide-organic framework as a luminescent probe to detect both histidine and aspartic acid in water. Inorg Chem 58:6356–6362

  167. 167.

    Wei N, Zhang Y, Liu L, Han ZB, Yuan DQ (2017) Pentanuclear Yb(III) cluster-based metal–organic frameworks as heterogeneous catalysts for CO2 conversion. Appl Catal B Environ 219:603–610

  168. 168.

    Wei N, Zuo RX, Zhang YY, Han ZB, Gu XJ (2017) Robust high-connected rare-earth MOFs as efficient heterogeneous catalysts for CO2 conversion. Chem Commun 53:3224–3227

  169. 169.

    Das SK, Chatterjee S, Bhunia S, Mondal A, Mitra P, Kumari V, Pradhan A, Bhaumik A (2017) A new strongly paramagnetic cerium-containing microporous MOF for CO2 fixation under ambient conditions. Dalton Trans 46:13783–13792

  170. 170.

    Ugale B, Dhankhar SS, Nagaraja CM (2018) Exceptionally stable and 20-connected lanthanide metal–organic frameworks for selective CO2 capture and conversion at atmospheric pressure. Cryst Growth Des 18:2432–2440

  171. 171.

    Xue ZM, Jiang JY, Ma MG, Li MF, Mu TC (2017) Gadolinium-based metal–organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis. ACS Sustain Chem Eng 5:2623–2631

  172. 172.

    Jing T, Chen L, Jiang FL, Yang Y, Zhou K, Yu MX, Cao Z, Li SC, Hong MC (2018) Fabrication of a robust lanthanide metal–organic framework as a multifunctional material for Fe(III) detection, CO2 capture, and utilization. Cryst Growth Des 18:2956–2963

  173. 173.

    Xu H, Zhai B, Cao CS, Zhai B (2016) A bifunctional europium-organic framework with chemical fixation of CO2 and luminescent detection of Al3+. Inorg Chem 55:9671–9967

  174. 174.

    Zhai B, Xu H, Li ZY, Cao CS, Zhao B (2017) A water-stable metal–organic framework: serving as a chemical sensor of PO4 3− and a catalyst for CO2 conversion. Sci China Chem 60:1328–1333

  175. 175.

    Dong J, Xu H, Hou SL, Wu ZL, Zhao B (2017) Metal–organic frameworks with Tb4 clusters as nodes: luminescent detection of chromium(VI) and chemical fixation of CO2. Inorg Chem 56:6244–6250

  176. 176.

    Qian WZ, Xu H, Cheng P, Zhao B (2017) 3d-4f heterometal–organic frameworks for efficient capture and conversion of CO2. Cryst Growth Des 17:3128–3133

  177. 177.

    Song TQ, Dong J, Yang AF, Che XJ, Gao HL, Cui JZ, Zhao B (2018) Wheel-like Ln18 cluster organic frameworks for magnetic refrigeration and conversion of CO2. Inorg Chem 57:3144–3150

  178. 178.

    Xu H, Cao CS, Hu HS, Wang SB, Liu JC, Cheng P, Kaltsoyannis N, Li J, Zhao B (2019) High uptake of ReO4 and CO2 conversion by a radiation-resistant thorium-nickel [Th48Ni6] nanocage-based metal–organic framework. Angew Chem Int Ed 58:6022–6027

  179. 179.

    Renslo AR, Luehr GW, Gordeev MF (2006) Recent developments in the identification of novel oxazolidinone antibacterial agents. Bioorg Med Chem 14:4227–4240

  180. 180.

    Barbachyn MR, Ford CW (2003) Oxazolidinone structure-activity relationships leading to linezolid. Angew Chem Int Ed 42:2010–2023

  181. 181.

    Andreou T, Costa AM, Esteban L, Gonzàlez L, Mas G, Vilarrasa J (2005) Synthesis of (–)-amphidinolide K fragment C9-C22. Org Lett 7:4083–4086

  182. 182.

    Hamdach A, Hadrami EME, Gil S, Zaragozá RJ, Zaballos-García E, Sepúlveda-Arques J (2006) Reactivity difference between diphosgene and phosgene in reaction with (2,3-anti)-3-amino-1,2-diols. Tetrahedron 62:6392–6397

  183. 183.

    Bhanage BM, Fujita S, Ikushimabc Y, Arai M (2004) Non-catalytic clean synthesis route using urea to cyclic urea and cyclic urethane compounds. Green Chem 6:78–80

  184. 184.

    Du Y, Wu Y, Liu AH, He LN (2008) Quaternary ammonium bromide functionalized polyethylene glycol: a highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. J Org Chem 73:4709–4712

  185. 185.

    Zhou H, Wang GX, Zhang WZ, Lu XB (2015) CO2 adducts of phosphorus Ylides: highly active organocatalysts for carbon dioxide transformation. ACS Catal 5:6773–6779

  186. 186.

    Xu H, Liu XF, Cao CS, Zhao B, Cheng P, He LN (2016) A porous metal–organic framework assembled by [Cu30] nanocages: serving as recyclable catalysts for CO2 fixation with aziridines. Adv Sci 2016:1600048

  187. 187.

    Zhao D, Liu XH, Zhu CD, Kang YS, Wang P, Shi ZZ, Lu Y, Sun WY (2017) Efficient and reusable metal–organic framework catalysts for carboxylative cyclization of propargylamines with carbon dioxide. ChemCatChem 9:4598–4606

  188. 188.

    Kathalikkattil AC, Roshan R, Tharun J, Babu R, Jeong GS, Kim DW, Cho SJ, Park DW (2017) A sustainable protocol for the facile synthesis of zinc-glutamate MOF: an efficient catalyst for room temperature CO2 fixation reactions under wet conditions. Chem Commun 52:280–283

  189. 189.

    Cao CS, Shi Y, Xu H, Zhao B (2018) A multifunctional MOF as a recyclable catalyst for the fixation of CO2 with aziridines or epoxides and as a luminescent probe of Cr(VI). Dalton Trans 47:4545–4553

  190. 190.

    Kang XM, Shi Y, Cao CS, Zhao B (2019) Stable metal–organic frameworks with high catalytic performance in the cycloaddition of CO2 with aziridines. Sci China Chem 62:622–628

  191. 191.

    Wang X, Gao WY, Niu Z, Wojas L, Perman JA, Chen YS, Li Z, Aguila B, Ma SQ (2018) A metal-metalloporphyrin framework based on an octatopic porphyrin ligand for chemical fixation of CO2 with aziridines. Chem Commun 54:1170–1173

  192. 192.

    García-García P, Fehr L, Rusconi G, Necado C (2016) Palladium-catalyzed incorporation of atmospheric CO2: efficient synthesis of functionalized oxazolidinones. Chem Sci 7:3914–3918

  193. 193.

    Meng MY, Song QW, Ma R, Xie JN, He LN (2016) Efficient conversion of carbon dioxide at atmospheric pressure to 2-oxazolidinones promoted by bifunctional Cu(II)-substituted polyoxometalate-based ionic liquids. Green Chem 18:282–287

  194. 194.

    Sadeghzadeh SM (2016) A green approach for the synthesis of 2-oxazolidinones using gold(I) complex immobilized on KCC-1 as nanocatalyst at room temperature. Appl Organometal Chem 30:835–842

  195. 195.

    Sadeghzadeh SM (2016) Gold (III) phosphorus complex immobilized on fibrous nano-silica as a catalyst for the cyclization of propargylic amines with CO2. J Mol Catal A Chem 423:216–223

  196. 196.

    Chang ZD, Jing X, He C, Liu X, Duan CY (2018) Silver clusters as robust nodes and π-activation sites for the construction of heterogeneous catalysts for the cycloaddition of propargylamines. ACS Catal 8:1384–1391

  197. 197.

    Yang HM, Zhang X, Zhang GY, Fei HH (2018) An alkaline-resistant Ag(I)-anchored pyrazolate-based metal–organic framework for chemical fixation of CO2. Chem Commun 54:4469–4472

  198. 198.

    Yoshida M, Ihara M (2012) Palladium-catalyzed domino reaction of 4-methoxycarbonyloxy-2-butyn-1-ols with phenols: a novel synthetic method for cyclic carbonates with recycling of CO2. Angew Chem Int Ed 40:616–619

  199. 199.

    Buzas A, Gagosz F (2006) Gold(I)-catalyzed formation of 4-alkylidene-1,3-dioxolan-2-ones from propargylic tert-butyl carbonates. Org Lett 8:515–518

  200. 200.

    Zhou Z, He C, Yang L, Wang YF, Liu T, Duan CY (2017) Alkyne activation by a porous silver coordination polymer for heterogeneous catalysis of carbon dioxide cycloaddition. ACS Catal 7:2248–2256

  201. 201.

    Zhang GY, Yang HM, Fei HH (2018) Unusual missing linkers in an organosulfonate-based primitive-cubic (pcu)-type metal–organic framework for CO2 capture and conversion under ambient conditions. ACS Catal 8:2519–2525

  202. 202.

    Hou SL, Dong J, Jiang XL, Jiao ZH, Zhao B (2019) A noble-metal-free metal–organic framework (MOF) catalyst for the highly efficient conversion of CO2 with propargylic alcohols. Angew Chem Int Ed 58:577–581

  203. 203.

    Gooßen LJ, Rodríguez N, Gooßen K (2008) Carboxylic acids as substrates in homogeneous catalysis. Angew Chem Int Ed 47:3100–3120

  204. 204.

    Guo CX, Yu B, Xie JN, He LN (2015) Silver tungstate: a single-component bifunctional catalyst for carboxylation of terminal alkynes with CO2 in ambient conditions. Green Chem 17:474–479

  205. 205.

    Zhang X, Zhang WZ, Ren X, Zhang LL, Lu XB (2011) Ligand-free Ag(I)-catalyzed carboxylation of terminal alkynes with CO2. Org Lett 13:2402–2405

  206. 206.

    Liu XH, Ma JG, Niu Z, Yang GM, Cheng P (2015) An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure. Angew Chem Int Ed 54:988–991

  207. 207.

    Molla RA, Ghosh K, Banerjee B, Iqubal MA, Kundu SK, Islam SM, Bhaumil A (2016) Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure. J Colloid Interface Sci 477:220–229

  208. 208.

    Zhu NN, Liu XH, Li T, Ma JG, Cheng P, Yang GM (2017) Composite system of Ag nanoparticles and metal–organic frameworks for the capture and conversion of carbon dioxide under mild conditions. Inorg Chem 56:3414–3420

  209. 209.

    Dutta G, Jana AK, Singh DK, Eswaramoorthy M, Natarajan S (2018) Encapsulation of silver nanoparticles in an amine-functionalized porphyrin metal–organic framework and its use as a heterogeneous catalyst for CO2 fixation under atmospheric pressure. Chem Asian J 13:2677–2684

  210. 210.

    Trivedi M, Bhaskaran Kumar A, Singh G, Kumar A, Rath NP (2016) Metal–organic framework MIL-101 supported bimetallic Pd–Cu nanocrystals as efficient catalysts for chromium reduction and conversion of carbon dioxide at room temperature. New J Chem 40:3109–3118

  211. 211.

    Sun LL, Yun YP, Sheng HT, Du YX, Ding YM, Wu P, Li P, Zhu MZ (2018) Rational encapsulation of atomically precise nanoclusters into metal–organic frameworks by electrostatic attraction for CO2 conversion. J Mater Chem A 6:15371–15376

  212. 212.

    Xiong G, Yu B, Dong J, Shi Y, Zhao B, He LN (2017) Cluster-based MOFs with accelerated chemical conversion of CO2 through C–C bond formation. Chem Commun 53:6013–6016

  213. 213.

    Yang HY, Zhang C, Gao P, Wang H, Li XP, Zhong LS, Wei W, Sun YH (2017) A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal Sci Technol 7:4580–4598

  214. 214.

    Aresta M, Dibenedetto A, Angelini (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742

  215. 215.

    Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136:14107–14113

  216. 216.

    Albrecht M, Rodemerck U, Schneider M, Bröring M, Baabe D, Kondratenko EV (2017) Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3. Appl Catal B Environ 204:119–126

  217. 217.

    Martin O, Martín AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferré D, Pérez-Ramírez J (2016) Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew Chem Int Ed 55:6261–6265

  218. 218.

    Chaturvedi D, Ray S (2006) Versatile use of carbon dioxide in the synthesis of carbamates. Monatsh Chem 137:127–145

  219. 219.

    Cheng K, Gu B, Liu XL, Kang JC, Zhang QH, Wang Y (2016) Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angew Chem Int Ed 55:4725–4728

  220. 220.

    Fujiwara M, Satale T, Shiokawa K, Sakurai H (2015) CO2 hydrogenation for C2+ hydrocarbon synthesis over composite catalyst using surface modified HB zeolite. Appl Catal B Environ 179:37–43

  221. 221.

    Kang SH, Bae JW, Cheon JY, Lee YJ, Ha KS, Jun KW, Lee DH, Kim BW (2011) Catalytic performance on iron-based Fischer-Tropsch catalyst in fixed-bed and bubbling fluidized-bed reactor. Appl Catal B Environ 103:169–180

  222. 222.

    Kuld S, Thorhauge M, Falsig H, Elkjær CF, Helveg S, Chorkendorff I, Sehested J (2016) Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 352:969–974

  223. 223.

    Ha NN, Ha NTT, Long NB, Cam LM (2019) Conversion of carbon monoxide into methanol on alumina-supported cobalt catalyst: role of the support and reaction mechanism-a theoretical study. Catalysts 9:6

  224. 224.

    Chakraborty S, Rene ER, Lens PNL, Veiga MC, Kennes C (2019) Enrichment of a solventogenic anaerobic sludge converting carbon monoxide and syngas into acids and alcohols. Bioresour Technol 272:130–136

  225. 225.

    Zhang TZ, Troll C, Rieger B, Kintrup J, Schlüter OFK, Weber R (2009) Reaction kinetics of oxychlorination of carbon monoxide to phosgene based on copper(II) chloride. Appl Catal A Gen 357:51–57

  226. 226.

    Zhang JZ, An B, Hong YH, MengYP HuXF, Wang C, Lin JD, Lin WB, Yong Wang (2017) Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation. Mater Chem Front 1:2405–2409

  227. 227.

    Zheng ZZ, Xu HT, Xu ZL, Ge JP (2018) A monodispersed spherical Zr-based metal–organic framework catalyst, Pt/Au@Pd@UIO-66, comprising an Au@Pd core-shell encapsulated in a UiO-66 center and its highly selective CO2 hydrogenation to produce CO. Small 14:1702812

  228. 228.

    Zhao X, Xu HT, Wang XX, Zheng ZZ, Xu ZL, Ge JP (2018) monodisperse metal–organic framework nanospheres with encapsulated core-shell nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}·4H2O for the highly selective conversion of CO2 to CO. ACS Appl Mater Interfaces 10:15096–15103

  229. 229.

    Thampi KR, Kiwi J, Grätzel M (1987) Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327:506–508

  230. 230.

    Zhen WL, Li B, Lu GX, Ma JT (2014) Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chem Commun 51:1728–1731

  231. 231.

    Zhen WL, Gao F, Tian B, Ding P, Deng YB, Li Z, Gao HB, Lu GX (2017) Enhancing activity for carbon dioxide methanation by encapsulating (111) facet Ni particle in metal–organic frameworks at low temperature. J Catal 348:200–211

  232. 232.

    Lin XH, Wang SB, Tu WG, Hu ZB, Ding ZX, Hou YD, Xu R, Dai WX (2019) MOF-derived hierarchical hollow spheres composed of carbon-confined Ni nanoparticles for efficient CO2 methanation. Catal Sci Technol 9:731–738

  233. 233.

    Lippi R, Howard SC, Barron H, Easton CD, Madsen IC, Waddington LJ, Vogt C, Hill MR, Sumby CJ, Doonan CJ, Kennedy DF (2017) Highly active catalyst for CO2 methanation derived from a metal organic framework template. J Mater Chem A 5:12990–12997

  234. 234.

    Li WH, Zhang AF, Jiang X, Chen C, Liu ZM, Song CS, Guo XW (2017) Low temperature CO2 methanation: ZIF-67-derived Co-based porous carbon catalysts with controlled crystal morphology and size. ACS Sustain Chem Eng 5:7824–7831

  235. 235.

    Liu QG, Yang XF, Li L, Miao S, Li Y, Li YQ, Wang XK, Huang YQ, Zhang T (2017) Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst. Nat Commun 8:1407

  236. 236.

    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658

  237. 237.

    Maihom T, Wannakao S, Boekfa B, Limtrakul J (2013) Production of formic acid via hydrogenation of CO2 over a copperalkoxide-functionalized MOF: a mechanistic study. J Phys Chem C 117:17650–17658

  238. 238.

    Ye JY, Johnson JK (2015) Design of Lewis pair-functionalized metal organic frameworks for CO2 hydrogenation. ACS Catal 5:2921–2928

  239. 239.

    Ye JY, Johnson JK (2015) Screening Lewis pair moieties for catalytic hydrogenation of CO2 in functionalized UiO-66. ACS Catal 5:6219–6229

  240. 240.

    An B, Zeng LZ, Jia M, Li Z, Lin ZK, Song Y, Zhou Y, Cheng J, Wang C, Lin WB (2017) Molecular iridium complexes in metal–organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer. J Am Chem Soc 139:17747–17750

  241. 241.

    Wang SP, Hou SH, Wu C, Zhao YJ, Ma XB (2019) RuCl3 anchored onto post-synthetic modification MIL-101(Cr)-NH2 as heterogeneous catalyst for hydrogenation of CO2 to formic acid. Chin Chem Lett 30:398–402

  242. 242.

    Rungtaweevoranit B, Baek J, Araujo JR, Archanjo BS, Choi KM, Yaghi OM, Somorjai GA (2016) Copper nanocrystals encapsulated in Zr-based metal–organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett 16:7645–7649

  243. 243.

    Yin YZ, Bing Hu, Li XL, Zhou XH, Hong XL, Liu GL (2018) Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol. Appl Catal B Environ 234:143–152

  244. 244.

    Ye JY, Johnson JK (2016) Catalytic hydrogenation of CO2 to methanol in a Lewis pair functionalized MOF. Catal Sci Technol 6:8392–8405

  245. 245.

    Visconti CG, Martinelli M, Falbo L, Infantes-Molina A, Lietti L, Forzatti P, Iaquaniello G, Palo E, Picutti B, Brignoli F (2017) CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst. Appl Catal B Environ 200:530–542

  246. 246.

    Hu S, Liu M, Ding FS, Song CS, Zhang GL, Guo XW (2016) Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins. J CO2 Util 15:89–95

  247. 247.

    Liu JH, Zhang AF, Liu M, Hu S, Ding FS, Song CS, Guo XW (2017) Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons. J CO2 Util 21:100–107

  248. 248.

    Liu JH, Sun YW, Jiang X, Zhang AF, Song CS, Guo XW (2018) Pyrolyzing ZIF-8 to N-doped porous carbon facilitated by iron and potassium for CO2 hydrogenation to value-added hydrocarbons. J CO2 Util 28:120–127

  249. 249.

    Ramirez A, Gevers L, Bavyhina A, Ould-Chikh S, Gascon J (2018) Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins. ACS Catal 8:9174–9182

  250. 250.

    Burgun A, Crees RS, Cole ML, Doonan CJ, Sumby CJ (2014) A 3-D diamondoid MOF catalyst based on in situ generated [Cu(L)2] N-heterocyclic carbene (NHC) linkers: hydroboration of CO2. Chem Commun 50:11760–11763

  251. 251.

    Gao WY, Wu HF, Leng KY, Sun YY, Ma SQ (2016) Inserting CO2 into aryl C–H bonds of metal–organic frameworks: CO2 utilization for direct heterogeneous C–H activation. Angew Chem Int Ed 55:5472–5476

  252. 252.

    Liu XF, Li XY, He LN (2019) Transition metal-catalyzed reductive functionalization of CO2. Eur J Org Chem 209:2437–2447

  253. 253.

    Shi F, Deng YQ, SiMa TL, Peng JJ, Gu YL, Qiao BT (2003) Alternatives to phosgene and carbon monoxide: synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids. Angew Chem Int Ed 42:3257–3260

  254. 254.

    Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li BT, Kunimori K (2004) Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chem 6:206–214

Download references


This work was supported by the NSFC (Grants 21625103, 21571107 and 21421001), the National Programs of the NanoKet Project (2017YFA0206700), and 111 Project (B12015).

Author information

Correspondence to Xiaohang Qiu or Bin Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Metal–Organic Framework: From Design to Applications”; edited by Xian-He Bu, Michael J. Zaworotko, and Zhenjie Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Hou, S., Qiu, X. et al. MOFs-Based Catalysts Supported Chemical Conversion of CO2. Top Curr Chem (Z) 378, 11 (2020). https://doi.org/10.1007/s41061-019-0269-9

Download citation


  • Metal–organic frameworks
  • Heterogeneous catalyst
  • CO2 conversion