Topics in Current Chemistry

, 378:4 | Cite as

Regulation of the Degree of Interpenetration in Metal–Organic Frameworks

  • Gaurav Verma
  • Sydney Butikofer
  • Sanjay Kumar
  • Shengqian MaEmail author
Part of the following topical collections:
  1. Metal-Organic Framework: From Design to Applications


Interpenetration in metal–organic frameworks (MOFs) can have significant impacts on the structure, porous nature, and functional applications of MOFs. Considered to be disadvantageous in the initial phases leading to a decrease in surface area, interpenetration has proved to be highly useful for modulation of pore size and selective separation of gases. The importance of interpenetration has been realized over the last decade, and numerous approaches to graft interpenetration and utilize it for improved functions and applications have been achieved. Several factors such as temperature, solvent system, time duration and steric aspects of the ligands have been utilized to regulate the degree of interpenetration (DOI). In this review, we summarize recent advances in regulating the DOI in MOFs and its impact on the resulting properties.


Degree of interpenetration Metal–organic frameworks (MOFs) Ligand design Partial interpenetration 



The authors acknowledge NSF (DMR-1352065) and University of South Florida for financial support of this work.


  1. 1.
    Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    James SL (2003) Metal–organic frameworks. Chem Soc Rev 32:276–288PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Meek ST, Greathouse JA, Allendorf MD (2011) Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23:249–267PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gharib M, Safarifard V, Morsali A (2018) Ultrasound assisted synthesis of amide functionalized metal–organic framework for nitroaromatic sensing. Ultrason Sonochem 42:112–118PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zhang Z, Yang Q, Cui X, Yang L, Bao Z, Ren Q, Xing H (2017) Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew Chem Int Ed 56:16282–16287CrossRefGoogle Scholar
  6. 6.
    Batten Stuart R, Champness Neil R, Chen X-M, Garcia-Martinez J, Kitagawa S, Öhrström L, O’Keeffe M, Paik Suh M, Reedijk J (2013) Terminology of metal–organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl Chem. CrossRefGoogle Scholar
  7. 7.
    MacGillivray LR (2010) Metal–organic frameworks: design and application. Wiley, New YorkCrossRefGoogle Scholar
  8. 8.
    Stock N, Biswas S (2012) Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cook TR, Zheng Y-R, Stang PJ (2013) Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem Rev 113:734–777PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cheong VF, Moh PY (2018) Recent advancement in metal–organic framework: synthesis, activation, functionalisation, and bulk production. Mater Sci Technol 34:1025–1045CrossRefGoogle Scholar
  11. 11.
    Kalmutzki MJ, Hanikel N, Yaghi OM (2018) Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci Adv 4:eaat9180PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle Iii T, Bosch M, Zhou H-C (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal–orrganic frameworks. Science 341:1230444PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kirchon A, Feng L, Drake HF, Joseph EA, Zhou H-C (2018) From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev 47:8611–8638PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lin Z-J, Lü J, Hong M, Cao R (2014) Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem Soc Rev 43:5867–5895PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou H-C (2018) Stable metal–orrganic frameworks: design, synthesis, and applications. Adv Mater 30:1704303CrossRefGoogle Scholar
  17. 17.
    Ding M, Flaig RW, Jiang H-L, Yaghi OM (2019) Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 48:2783–2828PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hendon CH, Rieth AJ, Korzyński MD, Dincă M (2017) Grand challenges and future opportunities for metal–orrganic frameworks. ACS Cent Sci 3:554–563PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ricco R, Pfeiffer C, Sumida K, Sumby CJ, Falcaro P, Furukawa S, Champness NR, Doonan CJ (2016) Emerging applications of metal–organic frameworks. CrystEngComm 18:6532–6542CrossRefGoogle Scholar
  20. 20.
    Tansell AJ, Jones CL, Easun TL (2017) MOF the beaten track: unusual structures and uncommon applications of metal–organic frameworks. Chem Cent J 11:100PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Allendorf MD, Stavila V (2015) Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm 17:229–246CrossRefGoogle Scholar
  22. 22.
    Wu D, Yang Q, Zhong C, Liu D, Huang H, Zhang W, Maurin G (2012) Revealing the structure–property relationships of metal–orrganic frameworks for CO2 capture from flue gas. Langmuir 28:12094–12099PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Alkordi MH, Belmabkhout Y, Cairns A, Eddaoudi M (2017) Metal–orrganic frameworks for H2 and CH4 storage: insights on the pore geometry-sorption energetics relationship. IUCrJ 4:131–135PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fang Z, Dürholt JP, Kauer M, Zhang W, Lochenie C, Jee B, Albada B, Metzler-Nolte N, Pöppl A, Weber B, Muhler M, Wang Y, Schmid R, Fischer RA (2014) Structural complexity in metal–orrganic frameworks: simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers. J Am Chem Soc 136:9627–9636PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Li W, Henke S, Cheetham AK (2014) Research update: mechanical properties of metal–organic frameworks—influence of structure and chemical bonding. APL Mater 2:123902CrossRefGoogle Scholar
  26. 26.
    Jeong W, Lim D-W, Kim S, Harale A, Yoon M, Suh MP, Kim J (2017) Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map. Proc Natl Acad Sci USA 114:7923–7928PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jiang H-L, Makal TA, Zhou H-C (2013) Interpenetration control in metal–organic frameworks for functional applications. Coord Chem Rev 257:2232–2249CrossRefGoogle Scholar
  28. 28.
    Haldar R, Sikdar N, Maji TK (2015) Interpenetration in coordination polymers: structural diversities toward porous functional materials. Mater Today 18:97–116CrossRefGoogle Scholar
  29. 29.
    Networks, topologies, and entanglements. In: Making crystals by design, pp 58–85.
  30. 30.
    Topology. In: Introduction to reticular chemistry, pp 429–452.
  31. 31.
    Gong Y-N, Zhong D-C, Lu T-B (2016) Interpenetrating metal–organic frameworks. CrystEngComm 18:2596–2606CrossRefGoogle Scholar
  32. 32.
    Öhrström L (2015) Let’s talk about MOFs—topology and terminology of metal–orrganic frameworks and why we need them. Crystals 5:154–162CrossRefGoogle Scholar
  33. 33.
    Frank M, Johnstone MD, Clever GH (2016) interpenetrated cage structures. Chemistry 22:14104–14125PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zhu R, Ding J, Jin L, Pang H (2019) Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coord Chem Rev 389:119–140CrossRefGoogle Scholar
  35. 35.
    Yaghi OM (2007) A tale of two entanglements. Nat Mater 6:92PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zhao D, Timmons DJ, Yuan D, Zhou H-C (2011) Tuning the topology and functionality of metal–organic frameworks by ligand design. Acc Chem Res 44:123–133PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Batten SR, Robson R (1998) Interpenetrating nets: ordered, periodic entanglement. Angew Chem Int Ed 37:1460–1494CrossRefGoogle Scholar
  38. 38.
    Batten SR (2001) Topology of interpenetration. CrystEngComm 3:67–72CrossRefGoogle Scholar
  39. 39.
    Li N, Xu J, Feng R, Hu T-L, Bu X-H (2016) Governing metal–organic frameworks towards high stability. Chem Commun 52:8501–8513CrossRefGoogle Scholar
  40. 40.
    Yin Z, Zhou Y-L, Zeng M-H, Kurmoo M (2015) The concept of mixed organic ligands in metal–orrganic frameworks: design, tuning and functions. Dalton Trans 44:5258–5275PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Cairns AB, Goodwin AL (2013) Structural disorder in molecular framework materials. Chem Soc Rev 42:4881–4893PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Farha OK, Hupp JT (2010) Rational design, synthesis, purification, and activation of metal–organic framework materials. Acc Chem Res 43:1166–1175PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J (2012) Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem Soc Rev 41:2308–2322PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou H-C (2018) Recent advances in gas storage and separation using metal–organic frameworks. Mater Today 21:108–121CrossRefGoogle Scholar
  45. 45.
    Morris RE, Brammer L (2017) Coordination change, lability and hemilability in metal–organic frameworks. Chem Soc Rev 46:5444–5462PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Liang W, Bhatt PM, Shkurenko A, Adil K, Mouchaham G, Aggarwal H, Mallick A, Jamal A, Belmabkhout Y, Eddaoudi M (2019) A tailor-made interpenetrated MOF with exceptional carbon-capture performance from flue gas. Chem 5:950–963CrossRefGoogle Scholar
  47. 47.
    Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C (2007) Framework-catenation isomerism in metal–organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129:1858–1859PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Burtch NC, Walton KS (2015) Modulating adsorption and stability properties in pillared metal–orrganic frameworks: a model system for understanding ligand effects. Acc Chem Res 48:2850–2857PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Carlucci L, Ciani G, Proserpio DM, Mitina TG, Blatov VA (2014) Entangled two-dimensional coordination networks: a general survey. Chem Rev 114:7557–7580PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kwon O, Park S, Zhou H-C, Kim J (2017) Computational prediction of hetero-interpenetration in metal–organic frameworks. Chem Commun 53:1953–1956CrossRefGoogle Scholar
  51. 51.
    Babarao R, Coghlan CJ, Rankine D, Bloch WM, Gransbury GK, Sato H, Kitagawa S, Sumby CJ, Hill MR, Doonan CJ (2014) Does functionalisation enhance CO2 uptake in interpenetrated MOFs? An examination of the IRMOF-9 series. Chem Commun 50:3238–3241CrossRefGoogle Scholar
  52. 52.
    Bara D, Wilson C, Mörtel M, Khusniyarov MM, Ling S, Slater B, Sproules S, Forgan RS (2019) Kinetic control of interpenetration in Fe–biphenyl-4,4′-dicarboxylate metal–orrganic frameworks by coordination and oxidation modulation. J Am Chem Soc 141:8346–8357PubMedPubMedCentralGoogle Scholar
  53. 53.
    Vicent-Morales M, Vitorica-Yrezabal IJ, Souto M, Minguez Espallargas G (2019) Influence of interpenetration on the flexibility of MUV-2. CrystEngComm 21:3031–3035CrossRefGoogle Scholar
  54. 54.
    Dan-Hardi M, Chevreau H, Devic T, Horcajada P, Maurin G, Férey G, Popov D, Riekel C, Wuttke S, Lavalley J-C, Vimont A, Boudewijns T, de Vos D, Serre C (2012) How interpenetration ensures rigidity and permanent porosity in a highly flexible hybrid solid. Chem Mater 24:2486–2492CrossRefGoogle Scholar
  55. 55.
    Dincǎ M, Dailly A, Tsay C, Long JR (2008) Expanded sodalite-type metal–organic frameworks: increased stability and H2 adsorption through ligand-directed catenation. Inorg Chem 47:11–13PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ye Y, Xiong S, Wu X, Zhang L, Li Z, Wang L, Ma X, Chen Q-H, Zhang Z, Xiang S (2016) Microporous metal–orrganic framework stabilized by balanced multiple host-couteranion hydrogen-bonding interactions for high-density CO2 capture at ambient conditions. Inorg Chem 55:292–299PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Jiang M, Li B, Cui X, Yang Q, Bao Z, Yang Y, Wu H, Zhou W, Chen B, Xing H (2018) Controlling pore shape and size of interpenetrated anion-pillared ultramicroporous materials enables molecular sieving of CO2 combined with ultrahigh uptake capacity. ACS Appl Mater Interfaces 10:16628–16635PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Lahoz-Martín FD, Calero S, Gutiérrez-Sevillano JJ, Martin-Calvo A (2017) Adsorptive separation of ethane and ethylene using isoreticular metal–orrganic frameworks. Microporous Mesoporous Mater 248:40–45CrossRefGoogle Scholar
  59. 59.
    Yang Q-Y, Lama P, Sen S, Lusi M, Chen K-J, Gao W-Y, Shivanna M, Pham T, Hosono N, Kusaka S, Perry Iv JJ, Ma S, Space B, Barbour LJ, Kitagawa S, Zaworotko MJ (2018) Reversible switching between highly porous and nonporous phases of an interpenetrated diamondoid coordination network that exhibits gate-opening at methane storage pressures. Angew Chem Int Ed 57:5684–5689CrossRefGoogle Scholar
  60. 60.
    Lapidus SH, Halder GJ, Chupas PJ, Chapman KW (2013) Exploiting high pressures to generate porosity, polymorphism, and lattice expansion in the nonporous molecular framework Zn(CN)2. J Am Chem Soc 135:7621–7628PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Aggarwal H, Das RK, Bhatt PM, Barbour LJ (2015) Isolation of a structural intermediate during switching of degree of interpenetration in a metal–organic framework. Chem Sci 6:4986–4992PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zhang J, Wojtas L, Larsen RW, Eddaoudi M, Zaworotko MJ (2009) Temperature and concentration control over interpenetration in a metal–organic material. J Am Chem Soc 131:17040–17041PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wang Y, Cheng L, Wang KJ, Perry Z, Jia W, Chen R, Wang ZL, Pang JD (2019) Temperature-controlled degree of interpenetration in a single-crystal-to-single-crystal transformation within two Co(II)-triazole frameworks. Inorg Chem 58:18–21PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Elsaidi SK, Mohamed MH, Wojtas L, Chanthapally A, Pham T, Space B, Vittal JJ, Zaworotko MJ (2014) Putting the squeeze on CH4 and CO2 through control over interpenetration in diamondoid nets. J Am Chem Soc 136:5072–5077PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Ferguson A, Liu L, Tapperwijn SJ, Perl D, Coudert F-X, Van Cleuvenbergen S, Verbiest T, van der Veen MA, Telfer SG (2016) Controlled partial interpenetration in metal–organic frameworks. Nat Chem 8:250PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Rankine D, Avellaneda A, Hill MR, Doonan CJ, Sumby CJ (2012) Control of framework interpenetration for in situ modified hydroxyl functionalised IRMOFs. Chem Commun 48:10328–10330CrossRefGoogle Scholar
  67. 67.
    Prasad TK, Suh MP (2012) Control of interpenetration and gas-sorption properties of metal–organic frameworks by a simple change in ligand design. Chem A Eur J 18:8673–8680CrossRefGoogle Scholar
  68. 68.
    Lun DJ, Waterhouse GIN, Telfer SG (2011) A general thermolabile protecting group strategy for organocatalytic metal–organic frameworks. J Am Chem Soc 133:5806–5809PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Feng D, Wang K, Wei Z, Chen Y-P, Simon CM, Arvapally RK, Martin RL, Bosch M, Liu T-F, Fordham S, Yuan D, Omary MA, Haranczyk M, Smit B, Zhou H-C (2014) Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nat Commun 5:5723PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Lippke J, Brosent B, von Zons T, Virmani E, Lilienthal S, Preuße T, Hülsmann M, Schneider AM, Wuttke S, Behrens P, Godt A (2017) Expanding the group of porous interpenetrated Zr-organic frameworks (PIZOFs) with linkers of different lengths. Inorg Chem 56:748–761PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lu JY, Fernandez WA, Ge Z, Abboud KA (2005) A novel two-fold interpenetrating 3D 42.84 network self-assembled from a new 1D coordination polymer. New J Chem 29:434–438CrossRefGoogle Scholar
  72. 72.
    Park J, Hong S, Moon D, Park M, Lee K, Kang S, Zou Y, John RP, Kim GH, Lah MS (2007) Porous metal–orrganic frameworks based on metal–orrganic polyhedra with nanosized cavities as supramolecular building blocks: two-fold interpenetrating primitive cubic networks of [Cu6L8]12 + nanocages. Inorg Chem 46:10208–10213PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Volkringer C, Loiseau T, Marrot J, Ferey G (2009) A MOF-type magnesium benzene-1,3,5-tribenzoate with two-fold interpenetrated ReO3 nets. CrystEngComm 11:58–60CrossRefGoogle Scholar
  74. 74.
    Su Z, Fan J, Sun W-Y (2013) Novel two-fold interpenetrated Zn-based metal–orrganic framework with triple-stranded right- and left-handed helical chains. Inorg Chem Commun 27:18–21CrossRefGoogle Scholar
  75. 75.
    Li F, Hong Y-S, Zuo K-X, Sun Q, Gao E-Q (2019) Highly selective fluorescent probe for Hg2+ and MnO4− by the two-fold interpenetrating metal–organic framework with nitro functionalized linkers. J Solid State Chem 270:509–515CrossRefGoogle Scholar
  76. 76.
    Mir MH, Kitagawa S, Vittal JJ (2008) Two- and three-fold interpenetrated metal–organic frameworks from one-pot crystallization. Inorg Chem 47:7728–7733PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wang X, Lin H, Mu B, Tian A, Liu G (2010) Encapsulation of discrete (H2O)12 clusters in a 3D three-fold interpenetrating metal–organic framework host with (3,4)-connected topology. Dalton Trans 39:6187–6189PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hu J-S, Zhu C-L, Song X-M, He J (2012) A three-folded interpenetrated metal–organic framework constructed by H-bonding interaction. Mendeleev Commun 22:220–221CrossRefGoogle Scholar
  79. 79.
    Santra A, Lah MS, Bharadwaj PK (2014) A partially fluorinated three-fold interpenetrated stable metal–organic framework with selective CO2 uptake. Z Anorg Allg Chem 640:1134–1140CrossRefGoogle Scholar
  80. 80.
    Huang S-y, Li J-q, Wu X-l, Zhang X-m, Luo M-b, Luo F (2014) A novel 4-connected binodal Moganite net with three-fold interpenetration. Inorg Chem Commun 39:1–4CrossRefGoogle Scholar
  81. 81.
    Yang E, Ding Q, Kang Y, Wang F (2014) A photoluminescent metal–organic framework with threefold interpenetrated diamond topological net. J Mol Struct 1072:228–231CrossRefGoogle Scholar
  82. 82.
    Tynan E, Jensen P, Kelly NR, Kruger PE, Lees AC, Moubaraki B, Murray KS (2004) The ligand, the metal and the Holey’-host: synthesis, structural and magnetic characterization of Co(II), Ni(II) and Mn(II) metal–organic frameworks incorporating 4,4′-dicarboxy-2,2′-bipyridine. Dalton Trans 2004:3440–3447CrossRefGoogle Scholar
  83. 83.
    Xu J, Bai Z-s, Chen M-s, Su Z, Chen S-s, Sun W-y (2009) Metal–organic frameworks with six- and four-fold interpenetration and their photoluminescence and adsorption property. CrystEngComm 11:2728–2733CrossRefGoogle Scholar
  84. 84.
    Wu J, Liu J-Q, Jia Z-B, Li Q-L, Li K-B, Li H, Daiguebonne C, Calvez G, Guillou O (2014) A new 3D four-fold interpenetrated dia-like polymer: gas sorption and computational analyses. CrystEngComm 16:10410–10417CrossRefGoogle Scholar
  85. 85.
    Zhu H-B, Shen Y, Fu Z-Z, Yu Y-Y, Jiang Y-F, Zhao Y (2019) A multifunctional Zn(II)-based four-fold interpenetrated metal–organic framework for highly sensitive sensing 2,4,6-trinitrophenol (TNP), nitrofurazone (NFZ) and nitrofurantoin (NFT). Inorg Chem Commun 103:21–24CrossRefGoogle Scholar
  86. 86.
    Chen Y-Q, Li G-R, Chang Z, Qu Y-K, Zhang Y-H, Bu X-H (2013) A Cu(i) metal–organic framework with 4-fold helical channels for sensing anions. Chem Sci 4:3678–3682CrossRefGoogle Scholar
  87. 87.
    Wen G-L, Wang Y-Y, Zhang Y-N, Yang G-P, Fu A-Y, Shi Q-Z (2009) A novel polythreaded metal–organic framework with inherent features of different side arms and five-fold interpenetration. CrystEngComm 11:1519–1521CrossRefGoogle Scholar
  88. 88.
    Wei Y-L, Li J-B, Song W-C, Zang S-Q (2012) Five-fold interpenetrating diamondlike 3D metal–organic frameworks constructed from the rigid 1,2-di(pyridin-4-yl)ethane-1,2-diol ligand and aromatic carboxylate. Inorg Chem Commun 15:16–20CrossRefGoogle Scholar
  89. 89.
    Liu C, Cui G-H, Zou K-Y, Zhao J-L, Gou X-F, Li Z-X (2013) Unusual six-connected self-catenated network with 5-fold interpenetrated CdSO4 subnets: stepwise synthesis, topology analysis and fluorescence properties. CrystEngComm 15:324–331CrossRefGoogle Scholar
  90. 90.
    Huo J, Yan S, Li H, Yu D, Arulsamy N (2018) Three new 5-fold interpenetrating diamondoid frameworks constructed by rigid diimidazole and dicarboxylate ligands. J Mol Struct 1156:224–229CrossRefGoogle Scholar
  91. 91.
    Lu Y-M, Lan Y-Q, Xu Y-H, Su Z-M, Li S-L, Zang H-Y, Xu G-J (2009) Interpenetrating metal–organic frameworks formed by self-assembly of tetrahedral and octahedral building blocks. J Solid State Chem 182:3105–3112CrossRefGoogle Scholar
  92. 92.
    Wu Q-R, Wang J-J, Hu H-M, Wang B-C, Wu X-L, Fu F, Li D-S, Yang M-L, Xue G-L (2010) Two novel cadmium(II) coordination polymers based on bis-functionalized ligand 4′-(4-carboxyphenyl)-2,2′:6′,2′’-terpyridine. Inorg Chem Commun 13:715–719CrossRefGoogle Scholar
  93. 93.
    Wang N, Ma J-G, Shi W, Cheng P (2012) Two novel Cd(II) complexes with unprecedented four- and six-fold interpenetration. CrystEngComm 14:5198–5202CrossRefGoogle Scholar
  94. 94.
    Xu H, Bao W, Xu Y, Liu X, Shen X, Zhu D (2012) An unprecedented 3D/3D hetero-interpenetrated MOF built from two different nodes, chemical composition, and topology of networks. CrystEngComm 14:5720–5722CrossRefGoogle Scholar
  95. 95.
    Zhou X, Li B, Li G, Qi Z, Shi Z, Feng S (2012) Synthesis, structures and luminescent properties of cadmium(II) metal organic frameworks based on 3-pyrid-4-ylbenzoic acid, 4-pyrid-4-ylbenzoic acid ligands. CrystEngComm 14:4664–4669CrossRefGoogle Scholar
  96. 96.
    Kole GK, Vittal JJ (2013) Solid-state reactivity and structural transformations involving coordination polymers. Chem Soc Rev 42:1755–1775PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Luo Q-D, Fan C-B, Zhang X, Meng X-M, Zhu Z, Jin F, Fan Y-H (2017) 5- and 7-fold interpenetrating 3D NiII/CoII MOFs modulated by dicarboxylate and bis(imidazole) mixed ligands: syntheses, topology structure, photodegradation properties. Inorg Chem Commun 76:108–113CrossRefGoogle Scholar
  98. 98.
    Mei L, Wang C-z, Zhu L-z, Gao Z-q, Chai Z-f, Gibson JK, Shi W-q (2017) Exploring new assembly modes of uranyl terephthalate: templated syntheses and structural regulation of a series of rare 2D → 3D polycatenated frameworks. Inorg Chem 56:7694–7706PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lysenko AB, Govor EV, Krautscheid H, Domasevitch KV (2006) Metal–organic frameworks incorporating Cu3(μ3-OH) clusters. Dalton Trans 2006:3772–3776CrossRefGoogle Scholar
  100. 100.
    Rivera-Carrillo M, Chakraborty I, Raptis RG (2010) Systematic synthesis of a metal organic framework based on triangular Cu3(μ3-OH) secondary building units: from a 0-D complex to a 1-D chain and a 3-D lattice. Cryst Growth Des 10:2606–2612PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Cheng X-C, Zhu X-H, Kuai H-W (2012) Eight-fold interpenetrating diamond-like metal–organic frameworks constructed with an N- and O-donor ligand for cadmium(II) and manganese(II). Z Naturforsch B J Chem Sci 67:1248–1254CrossRefGoogle Scholar
  102. 102.
    Sun D, Yan Z-H, Liu M, Xie H, Yuan S, Lu H, Feng S, Sun D (2012) Three- and eight-fold interpenetrated ThSi2 metal–organic frameworks fine-tuned by the length of ligand. Cryst Growth Des 12:2902–2907CrossRefGoogle Scholar
  103. 103.
    Huang S-y, Li J-q, Wu X-l, Zhang X-m, Luo M-b, Luo F (2014) A new acrylamide MOF with sra net showing an uncommon eight-fold interpenetration. Inorg Chem Commun 44:29–31CrossRefGoogle Scholar
  104. 104.
    Zhou M, Yan D, Dong Y, He X, Xu Y (2017) Chiral [Mo8O26]4-polyoxoanion-induced three-dimensional architectures with homochiral eight-fold interpenetrated metal–organic frameworks. Inorg Chem 56:9036–9043PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Dang L-l, Li J-q, Liu S-j, Luo M-b, Luo F (2014) A new acylamide MOF showing uncommon ten-fold interpenetration. Inorg Chem Commun 45:30–32CrossRefGoogle Scholar
  106. 106.
    Ahmad M, Katoch R, Garg A, Bharadwaj PK (2014) A novel 3D 10-fold interpenetrated homochiral coordination polymer: large spontaneous polarization, dielectric loss and emission studies. CrystEngComm 16:4766–4773CrossRefGoogle Scholar
  107. 107.
    Yaghi OM, Li H (1995) Hydrothermal synthesis of a metal–organic framework containing large rectangular channels. J Am Chem Soc 117:10401–10402CrossRefGoogle Scholar
  108. 108.
    Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM (2001) Interwoven metal–organic framework on a periodic minimal surface with extra-large pores. Science 291:1021–1023PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Sun D, Ma S, Ke Y, Collins DJ, Zhou H-C (2006) An interweaving MOF with high hydrogen uptake. J Am Chem Soc 128:3896–3897PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J Am Chem Soc 128:1304–1315PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Maji TK, Matsuda R, Kitagawa S (2007) A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat Mater 6:142–148PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Ma S, Wang X-S, Yuan D, Zhou H-C (2008) A coordinatively linked Yb metal–organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity. Angew Chem Int Ed 47:4130–4133CrossRefGoogle Scholar
  113. 113.
    Hafizovic J, Bjørgen M, Olsbye U, Dietzel PDC, Bordiga S, Prestipino C, Lamberti C, Lillerud KP (2007) The inconsistency in adsorption properties and powder XRD data of MOF-5 Is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J Am Chem Soc 129:3612–3620PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Liu L, Yao Z, Ye Y, Lin Q, Chen S, Zhang Z, Xiang S (2018) Enhanced intrinsic proton conductivity of metal–organic frameworks by tuning the degree of interpenetration. Cryst Growth Des 18:3724–3728CrossRefGoogle Scholar
  115. 115.
    Gupta V, Mandal SK (2019) A robust and water-stable two-fold interpenetrated metal–organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO2 capture. Dalton Trans 48:415–425PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Shi Z-Q, Guo Z-J, Zheng H-G (2015) Two luminescent Zn(ii) metal–organic frameworks for exceptionally selective detection of picric acid explosives. Chem Commun 51:8300–8303CrossRefGoogle Scholar
  117. 117.
    Tan A-d, Wang Y-f, Fu Z-y, Tsiakaras P, Liang Z-x (2017) Highly effective oxygen reduction reaction electrocatalysis: Nitrogen-doped hierarchically mesoporous carbon derived from interpenetrated nonporous metal–organic frameworks. Appl Catal B 218:260–266CrossRefGoogle Scholar
  118. 118.
    Liu Y-L, Yue K-F, Shan B-H, Xu L-L, Wang C-J, Wang Y-Y (2012) A new 3-fold interpenetrated metal–organic framework (MOF) based on trinuclear zinc(II) clusters as secondary building unit (SBU). Inorg Chem Commun 17:30–33CrossRefGoogle Scholar
  119. 119.
    Wu H-Y, Wang R-X, Yang W, Chen J, Sun Z-M, Li J, Zhang H (2012) 3-fold-interpenetrated uranium-organic frameworks: new strategy for rationally constructing three-dimensional uranyl organic materials. Inorg Chem 51:3103–3107PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Mei L, Wu Q-y, An S-w, Gao Z-q, Chai Z-f, Shi W-q (2015) Silver ion-mediated heterometallic three-fold interpenetrating uranyl-organic framework. Inorg Chem 54:10934–10945PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Zhang Y, Wang L, Yao R-X, Zhang X-M (2017) Fourfold-interpenetrated MOF [Ni(pybz)2] as coating material in gas chromatographic capillary column for separation. Inorg Chem 56:8912–8919PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Aggarwal H, Das RK, Engel ER, Barbour LJ (2017) A five-fold interpenetrated metal–organic framework showing a large variation in thermal expansion behaviour owing to dramatic structural transformation upon dehydration–rehydration. Chem Commun 53:861–864CrossRefGoogle Scholar
  123. 123.
    Zhang X-T, Chen H-T, Li B, Liu G-Z, Liu X-Z (2018) 3-Fold and 6-Fold interpenetrating diamond nets based on the designed N, N’-dioxide 3,3′-benzo(c)cinnoline dicarboxylic acid with highly sensitive luminescence sensing for NACs and Fe3+ ion. J Solid State Chem 267:28–34CrossRefGoogle Scholar
  124. 124.
    Kang X-M, Cheng R-R, Xu H, Wang W-M, Zhao B (2017) A sensitive luminescent acetylacetone probe based on Zn-MOF with six-fold interpenetration. Chem A Eur J 23:13289–13293CrossRefGoogle Scholar
  125. 125.
    Song B-Q, Qin C, Zhang Y-T, An L-T, Shao K-Z, Su Z-M (2015) A novel [4 + 3] interpenetrated net containing 7-fold interlocking pseudo-helical chains and exceptional catenane-like motifs. Dalton Trans 44:2844–2851PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Li S-L, Han M, Zhang Y, Li G-P, Li M, He G, Zhang X-M (2019) X-ray and UV dual photochromism, thermochromism, electrochromism, and amine-selective chemochromism in an Anderson-like Zn7 cluster-based 7-fold interpenetrated framework. J Am Chem Soc 141:12663–12672PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Cheng X, Zhu X-H, Kuai H-W (2012) Eight-fold interpenetrating diamond-like metal–organic frameworks constructed with an N- and O-donor ligand for cadmium(II) and Manganese(II). Chemistry 67b. CrossRefGoogle Scholar
  128. 128.
    Chen Z, Gallo G, Sawant VA, Zhang T, Zhu M, Liang L, Chanthapally A, Bolla G, Quah HS, Liu X, Loh KP, Dinnebier RE, Xu Q-H, Vittal JJ (2019) Giant enhancement of second harmonic generation accompanied by the structural transformation of 7-fold to 8-fold interpenetrated metal–organic framework (MOF). Angew Chem Int Ed. doi: 10.1002/anie.201911632 Google Scholar
  129. 129.
    Tseng T-W, Luo T-T, Tsai C-C, Lu K-L (2015) A huge diamondoid metal–organic framework with a neo-mode of tenfold interpenetration. CrystEngComm 17:2935–2939CrossRefGoogle Scholar
  130. 130.
    Loukopoulos E, Michail A, Kostakis GE (2018) A 12-fold ThSi2 interpenetrated network utilizing a glycine-based pseudopeptidic ligand. Crystals 8:47CrossRefGoogle Scholar
  131. 131.
    Wu H, Yang J, Su Z-M, Batten SR, Ma J-F (2011) An exceptional 54-fold interpenetrated coordination polymer with 103-srs network topology. J Am Chem Soc 133:11406–11409PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker JE, Tang CC, Allan DR, Rizkallah PJ, Hubberstey P, Champness NR, Mark Thomas K, Blake AJ, Schröder M (2012) A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nat Mater 11:710PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Verma G, Kumar S, Pham T, Niu Z, Wojtas L, Perman JA, Chen Y-S, Ma S (2017) Partially interpenetrated NbO topology metal–organic framework exhibiting selective gas adsorption. Cryst Growth Des 17:2711–2717CrossRefGoogle Scholar
  134. 134.
    O’Nolan D, Madden DG, Kumar A, Chen K-J, Pham T, Forrest KA, Patyk-Kazmierczak E, Yang Q-Y, Murray CA, Tang CC, Space B, Zaworotko MJ (2018) Impact of partial interpenetration in a hybrid ultramicroporous material on C2H2/C2H4 separation performance. Chem Commun 54:3488–3491CrossRefGoogle Scholar
  135. 135.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of South FloridaTampaUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-ChampaignChampaignUSA
  3. 3.Department of ChemistryMultani Mal Modi CollegePatialaIndia

Personalised recommendations