Advertisement

Topics in Current Chemistry

, 377:32 | Cite as

Synthesis and Applications of Porous Organosulfonate-Based Metal–Organic Frameworks

  • Guiyang Zhang
  • Honghan FeiEmail author
Review
  • 225 Downloads
Part of the following topical collections:
  1. Metal-Organic Framework: From Design to Applications

Abstract

Metal–organic frameworks (MOFs) are an emerging class of porous crystalline materials attracting attention for their vast array of topologies as well as potential applications in gas storage, heterogeneous catalysis, and molecular sensing. In most cases, organocarboxylates (or corresponding carboxylic acids) are the most common building block, achieving well-defined metal-carboxylate coordination motifs in MOF structures. However, organosulfonates (or corresponding sulfonic acids) have been less well studied in MOF chemistry, probably owing to the weak coordination tendency of the sulfonate oxygens toward metal centers. This review summarizes the research on organosulfonate-based porous crystalline MOFs in recent years. The construction of most porous organosulfonate MOFs relies on using either a second N-donor ligand or carboxylate–sulfonate bifunctional ligands. Despite occupying more confined porosity than the carboxylate counterpart, the permanent porosity in organosulfonate MOFs is often highly polar and hydrophilic. Thus, organosulfonate MOFs often exhibit improved proton/Li+ conductivity as well as CO2 affinity compared with their carboxylate-based counterparts. In addition, the application of organosulfonate MOFs in molecular sensing, molecular sieving, catalysis, and anion exchange are discussed in this review as well.

Graphic Abstract

Keywords

Porous materials Metal-organic framework Organosulfonate Proton conductivity CO2 capture 

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (51772217, 21971197), the Recruitment of Global Youth Experts of China, the Fundamental Research Funds for the Central Universities, and the Science & Technology Commission of Shanghai Municipality (14DZ226110).

References

  1. 1.
    Yaghi OM, Li H (1995) J Am Chem Soc 117:10401Google Scholar
  2. 2.
    Ding M, Flaig RW, Jiang H-L, Yaghi OM (2019) Coord Chem Rev 48:2783Google Scholar
  3. 3.
    Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276Google Scholar
  4. 4.
    Farha OK, Hupp JT (2010) Acc Chem Res 43:1166PubMedGoogle Scholar
  5. 5.
    Wu M-X, Yang Y-W (2017) Adv Mater 29:1606134Google Scholar
  6. 6.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Science 295:469PubMedPubMedCentralGoogle Scholar
  7. 7.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127PubMedGoogle Scholar
  8. 8.
    Duren T, Sarkisov L, Yaghi OM, Snurr RQ (2004) Langmuir 20:2683PubMedGoogle Scholar
  9. 9.
    Millward AR, Yaghi OM (2005) J Am Chem Soc 123:17998Google Scholar
  10. 10.
    Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Magiolaki I (2005) Science 309:2040PubMedGoogle Scholar
  11. 11.
    Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) J Am Chem Soc 130:13850PubMedGoogle Scholar
  12. 12.
    Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker JE, Tang CC, Allan DR, Rizkallah PJ, Hubberstey P, Champness NR, Thomas KM, Blake AJ, Schröder M (2012) Nat Mater 11:710PubMedGoogle Scholar
  13. 13.
    Mauritz KA, Moore RB (2004) Chem Rev 104:4535PubMedGoogle Scholar
  14. 14.
    Heidekum A, Harmer M, Hölderich WF (1997) Catal Lett 47:243Google Scholar
  15. 15.
    Kidwai M, Chauhan R, Bhatnagar S (2015) Currr Org Chem 19:72Google Scholar
  16. 16.
    Côté AP, Shimizu KH (2003) Coord Chem Rev 245:49Google Scholar
  17. 17.
    De Zorzi R, Guidolin N, Randaccio L, Purrello R, Geremia S (2009) J Am Chem Soc 131:2487PubMedGoogle Scholar
  18. 18.
    Dalrymple SA, Shimizu GKH (2002) Chem Commun 2224Google Scholar
  19. 19.
    Mavrandonakis A, Klontzas E, Tylianakis E, Froudakis GE (2009) J Am Chem Soc 131:13410PubMedGoogle Scholar
  20. 20.
    Ru C, Li Z, Zhao C, Duan Y, Zhuang Z, Bu F, Na H (2018) ACS Appl Mater Interfaces 10:7963PubMedGoogle Scholar
  21. 21.
    Colombo V, Montoro C, Maspero A, Palmisano G, Masciocchi N, Gali S, Barea E, Navarro JAR (2012) J Am Chem Soc 134:12830PubMedGoogle Scholar
  22. 22.
    Yang F, Xu G, Dou Y, Wang B, Zhang H, Wu H, Zhou W, Li J-R, Chen B (2017) Nat Energy 2:877Google Scholar
  23. 23.
    Phang WJ, Jo H, Lee WR, Song JH, Yoo K, Kim B, Hong CS (2015) Angew Chem Int Ed 54:5142Google Scholar
  24. 24.
    Shimizu GKH, Vaidhyanathan R, Taylor JM (2009) Chem Soc Rev 38:1430PubMedGoogle Scholar
  25. 25.
    Maity DK, Otake K, Ghosh S, Kitagawa H, Ghoshal D (2017) Inorg Chem 56:1581PubMedGoogle Scholar
  26. 26.
    Liu Q-Y, Xiahou Z-J, Wang Y-L, Li L-Q, Chen L-L, Fu Y (2013) Cryst Eng Commun 15:4930Google Scholar
  27. 27.
    Sun D, Cao R, Sun Y, Bi W, Yuan D, Shi Q, Li X (2003) Chem Commun 1528Google Scholar
  28. 28.
    Dong X-Y, Wang R, Li J-B, Zang S-Q, Hou H-W, Mac TCW (2013) Chem Commun 49:10590Google Scholar
  29. 29.
    Xing W-H, Li H-Y, Dong X-Y, Zang S-Q (2018) J Mater Chem A 6:7724Google Scholar
  30. 30.
    Dong X-Y, Wang R, Wang J-Z, Zang S-Q, Mak TCW (2015) J Mater Chem A 3:641Google Scholar
  31. 31.
    Wang H-H, Zhou L-J, Wang Y-L, Liu Q-Y (2016) Inorg Chem Commun 73:94Google Scholar
  32. 32.
    Joarder B, Lin J-B, Romero Z, Shimizu GKH (2017) J Am Chem Soc 13:7176Google Scholar
  33. 33.
    Côté AP, Shimizu GKH (2003) Chem Eur J 9:5361PubMedGoogle Scholar
  34. 34.
    Dalrymple SA, Shimizu GKH (2002) Chem Eur J 8:3011Google Scholar
  35. 35.
    Platero-Prats AE, Iglesias M, Snejko N, Monge MÁ, Gutiérrez-Puebla E (2011) Cryst Growth Des 11:1750Google Scholar
  36. 36.
    Perles J, Snejko N, Iglesias M, Monge MÁ (2009) J Mater Chem 19:6504Google Scholar
  37. 37.
    Chandler BD, Cramb DT, Shimizu GKH (2006) J Am Chem Soc 128:10403PubMedGoogle Scholar
  38. 38.
    Chandler BD, Yu JO, Cramb DT, Shimizu GKH (2007) Chem Mater 19:4467Google Scholar
  39. 39.
    Hurd JA, Vaidhyanathan R, Thangadurai V, Ratcliffe CI, Moudrakovski IL, Shimizu GKH (2009) Nat Chem 1:705PubMedGoogle Scholar
  40. 40.
    Zhang G, Wei G, Liu Z, Oliver SRJ, Fei H (2016) Chem Mater 28:6276Google Scholar
  41. 41.
    Zhang G, Fei H (2017) Chem Commun 53:4156Google Scholar
  42. 42.
    Zhang G, Yang H, Fei H (2018) ACS Catal 8:2519Google Scholar
  43. 43.
    Li P, Regati S, Huang H-C, Arman HD, Chen B-L, Zhao JC-G (2015) Chin Chem Lett 26:6Google Scholar
  44. 44.
    Desai AV, Joarder B, Roy A, Appl ACS (2018) ACS Appl Mater Interfaces 10:39049PubMedGoogle Scholar
  45. 45.
    Panda DK, Maity K, Paluposhka A (2019) ACS Sustain Chem Eng 7:4619Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations