Advertisement

Topics in Current Chemistry

, 377:33 | Cite as

Current Status of Microporous Metal–Organic Frameworks for Hydrocarbon Separations

  • Jiyan Pei
  • Kai Shao
  • Ling Zhang
  • Hui-Min Wen
  • Bin LiEmail author
  • Guodong Qian
Review
  • 189 Downloads
Part of the following topical collections:
  1. Metal-Organic Framework: From Design to Applications

Abstract

Separation of hydrocarbon mixtures into single components is a very important industrial process because all represent very important energy resources/raw chemicals in the petrochemical industry. The well-established industrial separation technology highly relies on the energy-intensive cryogenic distillation processes. The discovery of new materials capable of separating hydrocarbon mixtures by adsorbent-based separation technologies has the potential to provide more energy-efficient industrial processes with remarkable energy savings. Porous metal–organic frameworks (MOFs), also known as porous coordination polymers, represent a new class of porous materials that offer tremendous promise for hydrocarbon separations because of their easy tunability, designability, and functionality. A number of MOFs have been designed and synthesized to show excellent separation performance on various hydrocarbon separations. Here, we summarize and highlight some recent significant advances in the development of microporous MOFs for hydrocarbon separation applications.

Keywords

Metal–organic framework Hydrocarbon separation Molecular sieving Ethylene Propylene 

Abbreviations

Hpba

4-(4-Pyridyl) benzoic acid

H2bdc

1,4-Benzenedicarboxylic acid

H2bbdc

5-tert-Butyl-1,3-benzenedicarboxylic acid

pdt

Pyrazine-2,3-dithiol

bpa

1,2-bis(4-Pyridyl)acetylene

Ad

Adenine

bpy

4,4′-Bipyridine

HOTf

Trifluoromethanesulfonate

pyz

Pyrazine

pyz-NH2

2-Aminopyrazine

H2bpdc

4,4′-Biphenyldicarboxylic acid

bpee

1,2-Bipyriylethylene

H4mdobdc

4,6-Dioxido-1,3-benzenedicarboxylic acid

H2batz

bis(5-Amino-1H-1,2,4-triazol-3-yl)methane

Hina

Isonicotinic acid

HQc

Quinolone-5-carboxylic acid

H2ipa

Isophthalic acid

H4dobdc

2,5-Dioxido-1,4-benzenedicarboxylic acid

DCPN

5-(3′,5′-Dicarboxylpheny)nicotinate

H4abtc

3,3′,5,5′-Azobenzene-tetracarboxylic acid

DMA

Dimethylammonium

H2btm

bis(5-Methyl-1H-1,2,4-triazol-3-yl)methane

H2BDP

1,4-Benzenedipyrazolate

H4tcpb

1,2,4,5-Tetrakis(4-carboxyphenyl)-benzene

H4bptc

3,3′,5,5′-Biphenyltetracarboxylic acid

bipy

4,4′-Bipyridine

Heim

2-Ethylimidazolate

azpy

4,4′-Azopyridine

dpa

4,4′-Dipyridylacetylene

1,4-NDC

1,4-Naphthalenedicarboxylate

ADC

Acetylenedicarboxylate

DABCO

1.4-Diazabicyclo[2.2.2]octane

TMBDC

2,3,5,6-Tetramethylterephthalic

H2btk

bis(5-Methyl-1,2,4-triazol-3-yl)methanone

INA

Isonicotinate

Notes

Acknowledgements

This research was supported by the “National 1000 Young Talent Program”, the “Zhejiang University 100 Talent Program”, the National Science Foundation of China (51803179), and the Fundamental Research Funds for the Central Universities (2018QNA4010).

References

  1. 1.
    Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nature 532(7600):435PubMedGoogle Scholar
  2. 2.
    Peplow M (2015) Materials science: the hole story. Nature 520(7546):148–150PubMedGoogle Scholar
  3. 3.
    Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477–1504PubMedGoogle Scholar
  4. 4.
    Kitagawa S, Kitaura R, Noro SI (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375Google Scholar
  5. 5.
    Furukawa H et al (2013) The chemistry and applications of metal–organic frameworks. Science 341(6149):974Google Scholar
  6. 6.
    Maurin G et al (2017) The new age of MOFs and of their porous-related solids. Chem Soc Rev 46(11):3104–3107PubMedGoogle Scholar
  7. 7.
    Li B et al (2016) Emerging multifunctional metal-organic framework materials. Adv Mater 28(40):8819–8860PubMedGoogle Scholar
  8. 8.
    O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem Rev 112(2):675–702PubMedGoogle Scholar
  9. 9.
    Lu WG et al (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43(16):5561–5593PubMedGoogle Scholar
  10. 10.
    Yaghi OM (2016) Reticular chemistry-construction, properties, and precision reactions of frameworks. J Am Chem Soc 138(48):15507–15509PubMedGoogle Scholar
  11. 11.
    Guillerm V et al (2014) A supermolecular building approach for the design and construction of metal–organic frameworks. Chem Soc Rev 43(16):6141–6172PubMedGoogle Scholar
  12. 12.
    Sumida K et al (2012) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112(2):724–781PubMedGoogle Scholar
  13. 13.
    Yan Y et al (2014) Studies on metal–organic frameworks of Cu(II) with Isophthalate linkers for hydrogen storage. Acc Chem Res 47(2):296–307PubMedGoogle Scholar
  14. 14.
    Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 43(16):933–969Google Scholar
  15. 15.
    Wen HM et al (2018) A metal–organic framework with optimized porosity and functional sites for high gravimetric and volumetric methane storage working capacities. Adv Mater 30(16):1704792Google Scholar
  16. 16.
    Deng H et al (2012) Large-pore apertures in a series of metal–organic frameworks. Science 336(6084):1018–1023PubMedGoogle Scholar
  17. 17.
    Eddaoudi M et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472PubMedGoogle Scholar
  18. 18.
    Cui Y et al (2016) Metal–organic frameworks as platforms for functional materials. Acc Chem Res 49(3):483–493PubMedGoogle Scholar
  19. 19.
    Li B et al (2016) Applications of metal–organic frameworks featuring multi-functional sites. Cood Chem Rev 307:106–129Google Scholar
  20. 20.
    Wen HM et al (2019) A metal–organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO2 capture. J Mater Chem A 7(7):3128–3134Google Scholar
  21. 21.
    Bai Y et al (2016) Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45(8):2327–2367PubMedGoogle Scholar
  22. 22.
    Furukawa SH et al (2014) Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem Soc Rev 43(16):5700–5734PubMedGoogle Scholar
  23. 23.
    Zhang Z et al (2014) Perspective of microporous metal–organic frameworks for CO2 capture and separation. Energy Environ Sci 7(9):2868–2899Google Scholar
  24. 24.
    Wang C, Liu D, Lin W (2013) Metal–organic frameworks as a tunable platformfor designing functional molecular materials. J Am Chem Soc 135:13222–13234PubMedPubMedCentralGoogle Scholar
  25. 25.
    Li JR, Sculley J, Zhou HC (2012) Metal–organic frameworks for separations. Chem Rev 112(2):869–932PubMedGoogle Scholar
  26. 26.
    Wu HH et al (2012) Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem Rev 112(2):836PubMedGoogle Scholar
  27. 27.
    Herm ZR, Bloch ED, Long JR (2013) Hydrocarbon separations in metal–organic frameworks. Chem Mater 26(26):323–338Google Scholar
  28. 28.
    Bao Z et al (2016) Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy Environ Sci 9(12):3612–3641Google Scholar
  29. 29.
    Adil K et al (2017) Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem Soc Rev 46(11):3402PubMedGoogle Scholar
  30. 30.
    Zhao X et al (2018) Metal–organic frameworks for separation. Adv Mater 30(37):1705189Google Scholar
  31. 31.
    Cui WG, Hu TL, Bu XH (2019) Metal–organic framework materials for the separation and purification of light hydrocarbons. Adv Mater.  https://doi.org/10.1002/adma.201806445 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang JP et al (2014) Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem Soc Rev 43(16):5789–5814PubMedGoogle Scholar
  33. 33.
    Li J, Sun J (2017) Application of X-ray diffraction and electron crystallography for solving complex structure problems. Acc Chem Res 50(11):2737–2745PubMedGoogle Scholar
  34. 34.
    Das MC et al (2011) A new approach to construct a doubly interpenetrated microporous metal–organic framework of primitive cubic net for highly selective sorption of small hydrocarbon molecules. Chem Eur J 17(28):7817–7822PubMedGoogle Scholar
  35. 35.
    He Y et al (2012) A microporous metal–organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperature. Chem Eur J 18(2):613–619PubMedGoogle Scholar
  36. 36.
    He Y et al (2012) High separation capacity and selectivity of C2 hydrocarbons over methane within a microporous metal–organic framework at room temperature. Chem Eur J 18(7):1901–1904PubMedGoogle Scholar
  37. 37.
    He Y, Krishna R, Chen B (2012) Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ Sci 5(10):9107–9120Google Scholar
  38. 38.
    Horike S et al (2012) A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6 gas separation: equilibrium and kinetic studies. Chem Sci 3(1):116–120Google Scholar
  39. 39.
    Ma SQ et al (2010) A mesh-adjustable molecular sieve for general use in gas separation. Angew Chem Int Ed 46(14):2458–2462Google Scholar
  40. 40.
    Ma SQ et al (2009) Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure. J Am Chem Soc 131(18):6445–6451PubMedGoogle Scholar
  41. 41.
    Peng YL et al (2018) Robust ultramicroporous metal–organic frameworks with benchmark affinity for acetylene. Angew Chem Int Ed 57:10971–10975Google Scholar
  42. 42.
    Zhang Y et al (2019) A microporous metal–organic framework supramolecularly assembled from a CuII dodecaborate cluster complex for selective gas separation. Angew Chem Int Ed 58(24):8145–8150Google Scholar
  43. 43.
    Xiang SC et al (2011) Rationally tuned micropores within enantiopure metal–organic frameworks for highly selective separation of acetylene and ethylene. Nat Commun 2(1):1–7Google Scholar
  44. 44.
    Bloch ED et al (2012) Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335(6076):1606PubMedGoogle Scholar
  45. 45.
    Yang S et al (2015) Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nat Chem 7(2):121–129Google Scholar
  46. 46.
    Das MC et al (2012) Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M’MOFs) for their highly selective separation of chiral and achiral small molecules. J Am Chem Soc 134(20):8703–8710PubMedGoogle Scholar
  47. 47.
    Wen HM et al (2016) High acetylene/ethylene separation in a microporous zinc(II) metal–organic framework with low binding energy. Chem Commun 52(6):1166–1169Google Scholar
  48. 48.
    Li L et al (2017) Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal–organic framework. J Mater Chem A 5(36):18984–18988Google Scholar
  49. 49.
    Zaworotko MJ et al (2018) Impact of partial interpenetration in a hybrid ultramicroporous material on C2H2/C2H4 separation performance. Chem Commun 54(28):3488–3491Google Scholar
  50. 50.
    Jin G-X et al (2018) APPT-Cd MOF: acetylene adsorption mechanism and its highly efficient acetylene/ethylene separation at room temperature. Chem Mater 30(21):7433–7437Google Scholar
  51. 51.
    Hu TL et al (2015) Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nat Commun 6:7328PubMedPubMedCentralGoogle Scholar
  52. 52.
    Cui X et al (2016) Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353(6295):141–144PubMedGoogle Scholar
  53. 53.
    Li B et al (2017) An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv Mater 29(47):1704210Google Scholar
  54. 54.
    Li J et al (2019) Metal–organic framework containing planar metal-binding sites: efficiently and cost-effectively enhancing the kinetic separation of C2H2/C2H4. J Am Chem Soc 141(9):3807–3811PubMedGoogle Scholar
  55. 55.
    Li L et al (2017) Flexible-robust metal–organic framework for efficient removal of propyne from propylene. J Am Chem Soc 139(23):7733–7736PubMedGoogle Scholar
  56. 56.
    Yang L et al (2018) Gas separation: a single-molecule propyne trap: highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials. Adv Mater 30(10):1870068Google Scholar
  57. 57.
    Wen HM et al (2018) Fine-tuning of nano-traps in a stable metal–organic framework for highly efficient removal of propyne from propylene. J Mater Chem A 6(16):6931–6937Google Scholar
  58. 58.
    Li L et al (2018) A metal–organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene. Angew Chem Int Ed 130(46):15403–15408Google Scholar
  59. 59.
    Yang L et al (2018) A highly sensitive flexible metal–organic framework sets a new benchmark for separating propyne from propylene. J Mater Chem A 6:24452–24458Google Scholar
  60. 60.
    Yang L et al (2018) An asymmetric anion-pillared metal–organic framework as a multisite adsorbent enables simultaneous removal of propyne and propadiene from propylene. Angew Chem Int Ed 130(40):13329–13333Google Scholar
  61. 61.
    Peng YL et al (2019) Robust microporous metal–organic frameworks for highly efficient and simultaneous removal of propyne and propadiene from propylene. Angew Chem Int Ed.  https://doi.org/10.1002/anie.201904312 CrossRefGoogle Scholar
  62. 62.
    Ferreira AFP et al (2011) Suitability of Cu-BTC extrudates for propane–propylene separation by adsorption processes. Chem Eng J 167(1):1–12Google Scholar
  63. 63.
    Bae YS et al (2012) High propene/propane selectivity in isostructural metal–organic frameworks with high densities of open metal sites. Angew Chem Int Ed 51(8):1857–1860Google Scholar
  64. 64.
    Canan G et al (2010) Ethane/ethene separation turned on its head: selective ethane adsorption on the metal–organic framework ZIF-7 through a gate-opening mechanism. J Am Chem Soc 132(50):17704–17706Google Scholar
  65. 65.
    Nour N et al (2012) Tuning the gate opening pressure of metal–organic frameworks (MOFs) for the selective separation of hydrocarbons. J Am Chem Soc 134(37):15201Google Scholar
  66. 66.
    Li K et al (2014) Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J Am Chem Soc 131(30):10368–10369Google Scholar
  67. 67.
    Li BY et al (2014) Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J Am Chem Soc 136(24):8654–8660PubMedGoogle Scholar
  68. 68.
    Bachman JE et al (2017) M2(m-dobdc) (M=Mn, Fe Co, Ni) metal–organic frameworks as highly selective, high-capacity adsorbents for olefin/paraffin separations. J Am Chem Soc 139(43):15363PubMedGoogle Scholar
  69. 69.
    Bao Z et al (2018) Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal–organic frameworks. Angew Chem Int Ed 130(49):16252–16257Google Scholar
  70. 70.
    Bereciartua PJ et al (2017) Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science 358(6366):1068PubMedGoogle Scholar
  71. 71.
    Lin RB et al (2018) Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat Mater 17(12):1128–1133PubMedGoogle Scholar
  72. 72.
    Wang Y et al (2019) Pore size reduction in zirconium metal–organic frameworks for ethylene/ethane separation. ACS Sustain Chem Eng 7(7):7118–7126Google Scholar
  73. 73.
    Liao PQ et al (2015) Efficient purification of ethene by an ethane-trapping metal–organic framework. Nat Commun 6:8697PubMedPubMedCentralGoogle Scholar
  74. 74.
    Lin RB et al (2018) Boosting ethane/ethylene separation within isoreticular ultramicroporous metal–organic frameworks. J Am Chem Soc 140(40):12940–12946PubMedGoogle Scholar
  75. 75.
    Qazvini OT et al (2019) A robust ethane-trapping metal–organic framework with a high capacity for ethylene purification. J Am Chem Soc 141(12):5014–5020PubMedGoogle Scholar
  76. 76.
    Li L et al (2018) Ethane/ethylene separation in a metal–organic framework with iron-peroxo sites. Science 362(6413):443PubMedGoogle Scholar
  77. 77.
    Wang X et al (2019) Pore environment engineering in metal–organic frameworks for efficient ethane/ethylene separation. J Mater Chem A 7(22):13585–13590Google Scholar
  78. 78.
    Hao HG et al (2018) Simultaneous trapping of C2H2 and C2H6 from a ternary mixture of C2H2/C2H4/C2H6 in a robust metal–organic framework for the purification of C2H4. Angew Chem Int Ed 130(49):16299–16303Google Scholar
  79. 79.
    Cadiau A et al (2016) A metal–organic framework-based splitter for separating propylene from propane. Science 353(6295):137PubMedGoogle Scholar
  80. 80.
    Wang H et al (2018) Tailor-made microporous metal–organic frameworks for the full separation of propane from propylene through selective size exclusion. Adv Mater 30(49):1805088Google Scholar
  81. 81.
    Wang Y et al (2019) Selective aerobic oxidation of a metal–organic framework boosts thermodynamic and kinetic propylene/propane selectivity. Angew Chem Int Ed 58:7692–7696Google Scholar
  82. 82.
    Cui J et al (2019) Efficient separation of n-butene and iso-butene by flexible ultramicroporous metal–organic frameworks with pocket-like cavities. Chem-Asian J.  https://doi.org/10.1002/asia.201900735 CrossRefPubMedGoogle Scholar
  83. 83.
    Assen AH et al (2016) Ultra-tuning of the rare-earth fcu-mof aperture size for selective molecular exclusion of branched paraffins. Angew Chem Int Ed Eng 54(48):14586Google Scholar
  84. 84.
    Zhang Z et al (2017) Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew Chem Int Ed 56(51):16282Google Scholar
  85. 85.
    Liao PQ et al (2017) Controlling guest conformation for efficient purification of butadiene. Science 356(6343):1193PubMedGoogle Scholar
  86. 86.
    Bárcia PS et al (2007) Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal–organic framework. J Phys Chem B 111(22):6101–6103PubMedGoogle Scholar
  87. 87.
    Pan L et al (2006) Separation of hydrocarbons with a microporous metal–organic framework. Angew Chem Int Ed 45(4):616–619Google Scholar
  88. 88.
    Wang H, Li J (2019) Microporous metal–organic frameworks for adsorptive separation of C5–C6 alkane isomers. Acc Chem Res.  https://doi.org/10.1021/acs.accounts.8b00658 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Herm ZR et al (2013) Separation of hexane isomers in a metal–organic framework with triangular channels. Science 340(6135):960–964PubMedGoogle Scholar
  90. 90.
    Hao W et al (2018) One-of-a-kind: a microporous metal–organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving. Energy Environ Sci 11:1226–1231Google Scholar
  91. 91.
    Wang H et al (2018) Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat Commun 9(1):1745PubMedPubMedCentralGoogle Scholar
  92. 92.
    Torres-Knoop A, Krishna R, Dubbeldam D (2014) Separating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8. Angew Chem Int Ed 53(30):7774–7778Google Scholar
  93. 93.
    Gonzalez MI et al (2018) Separation of xylene isomers through multiple metal site interactions in metal–organic frameworks. J Am Chem Soc 140(9):3412–3422PubMedGoogle Scholar
  94. 94.
    Chen BL et al (2006) A microporous metal–organic framework for gas-chromatographic separation of alkanes. Angew Chem Int Ed 45(9):1390–1393Google Scholar
  95. 95.
    Gu ZY, Yan XP (2010) Metal–organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew Chem Int Ed 49(8):1477–1480Google Scholar
  96. 96.
    Finsy V et al (2008) Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal–organic framework MIL-47. J Am Chem Soc 130(22):7110–7118PubMedGoogle Scholar
  97. 97.
    Finsy V et al (2010) Framework breathing in the vapour-phase adsorption and separation of xylene isomers with the metal–organic framework MIL-53. Chem Eur J 15(31):7724–7731Google Scholar
  98. 98.
    He CT et al (2015) Exceptional hydrophobicity of a large-pore metal–organic zeolite. J Am Chem Soc 137(22):7217–7223PubMedGoogle Scholar
  99. 99.
    Wee LH et al (2016) 1D–2D–3D transformation synthesis of hierarchical metal-organic framework adsorbent for multicomponent alkane separation. J Am Chem Soc 139(2):819–828Google Scholar
  100. 100.
    Bury W et al (2018) Rational design of noncovalent diamondoid microporous materials for low-energy separation of C6-hydrocarbons. J Am Chem Soc 140(44):15031–15037PubMedGoogle Scholar
  101. 101.
    Li Y et al (2019) Cryo-EM structures of atomic surfaces and host-guest chemistry in metal–organic frameworks. Matter.  https://doi.org/10.1016/j.matt.2019.06.001 CrossRefGoogle Scholar
  102. 102.
    Bétard A, Fischer RA (2012) Metal-organic framework thin films: from fundamentals to applications. Chem Rev 112(2):1055–1083PubMedGoogle Scholar
  103. 103.
    Qiu S, Xue M, Zhu G (2014) Metal–organic framework membranes: from synthesis to separation application. Chem Soc Rev 43(16):6116–6140PubMedGoogle Scholar
  104. 104.
    Lin JY (2016) Molecular sieves for gas separation. Science 353(6295):121PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jiyan Pei
    • 1
  • Kai Shao
    • 1
  • Ling Zhang
    • 1
  • Hui-Min Wen
    • 2
  • Bin Li
    • 1
    Email author
  • Guodong Qian
    • 1
  1. 1.State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.College of Chemical EngineeringZhejiang University of TechnologyZhejiangPeople’s Republic of China

Personalised recommendations