Topics in Current Chemistry

, 377:29 | Cite as

Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis

  • Diab Khalafallah
  • Mingjia ZhiEmail author
  • Zhanglian HongEmail author


Sustainable and high performance energy devices such as solar cells, fuel cells, metal–air batteries, as well as alternative energy conversion and storage systems have been considered as promising technologies to meet the ever-growing demands for clean energy. Hydrogen evolution reaction (HER) is a crucial process for cost-effective hydrogen production; however, functional electrocatalysts are potentially desirable to expedite reaction kinetics and supply high energy density. Thus, the development of inexpensive and catalytically active electrocatalysts is one of the most significant and challenging issues in the field of electrochemical energy storage and conversion. Realizing that advanced nanomaterials could engender many advantageous chemical and physical properties over a wide scale, tremendous efforts have been devoted to the preparation of earth-abundant transition metals as electrocatalysts for HER in both acidic and alkaline environments because of their low processing costs, reasonable catalytic activities, and chemical stability. Among all transition metal-based catalysts, nickel compounds are the most widely investigated, and have exhibited pioneering performances in various electrochemical reactions. Heterostructured nickel phosphide (NixPy) based compounds were introduced as promising candidates of a new category, which often display chemical and electronic characteristics that are distinct from those of non-precious metals counterparts, hence providing an opportunity to construct new catalysts with an improved activity and stability. As a result, the library of NixPy catalysts has been enriched very rapidly, with the possibility of fine-tuning their surface adsorption properties through synergistic coupling with nearby elements or dopants as the basis of future practical implementation. The current review distils recent advancements in NixPy compounds/hybrids and their application for HER, with a robust emphasis on breakthroughs in composition refinement. Future perspectives for modulating the HER activity of NixPy compounds/hybrids, and the challenges that need to be overcome before their practical use in sustainable hydrogen production are also discussed.


NixPy electrocatalysts HER electrocatalysis Synthesis Heterostructured materials Electrochemical activity Stability Electronic structure Hybridization Chemical composition Conductivity Theoretical calculation 



This work is supported by national key research and development program (Grant No. 2016YFB0901600), Zhejiang Provincial Natural Science Foundation of China under Grant No. LY19E020014, and NSCF (Grant Nos. 21303162 and 11604295).


  1. 1.
    Andrew NM, Brain MA, Andrew ML, James AR, Prisco F, Sam MD (2017) Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nat Commun 8:14202CrossRefGoogle Scholar
  2. 2.
    Nicola A, Vincenzo B (2011) Towards an electricity-powered world. Energy Environ Sci 4(9):3193–3222CrossRefGoogle Scholar
  3. 3.
    Lv Y, Wang X (2017) Nonprecious metal phosphides as catalysts for hydrogen evolution, oxygen reduction and evolution reactions. Catal Sci Technol 7:3676–3691CrossRefGoogle Scholar
  4. 4.
    Chang X, Wang T, Gong J (2016) CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci 9:2177–2196CrossRefGoogle Scholar
  5. 5.
    Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Zhang J, Zhao Z, Xia Z, Dai L (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hu J, Guo Z, McWilliams PE, Darges JE, Druffel DL, Moran AM, Warren SC (2016) Band gap engineering in a 2D material for solar-to-chemical energy conversion. Nano Lett 16:74–79PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wang Y, Kong B, Zhao D, Wang H, Selomulya C (2017) Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 15(2017):26–55CrossRefGoogle Scholar
  10. 10.
    Joo J, Choun M, Jeong J, Lee J (2015) Influence of solution pH on Pt anode catalyst in direct formic acid fuel cells. ACS Catal 5:6848–6851CrossRefGoogle Scholar
  11. 11.
    Hunter BM, Gray HB, Müller AM (2016) Earth-abundant heterogeneous water oxidation catalysts. Chem Rev 116:14120–14136PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Crabtree GW, Dresselhaus MS, Buchanan MV (2004) Phys Today 57:39–44CrossRefGoogle Scholar
  13. 13.
    Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Turner JA (2004) Sustainable hydrogen production. Science 305:972–974PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wang H, Dai H (2013) Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chem Soc Rev 42:3088–3113PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135:2013–2036PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Carmo M, Fritz DL, Mergel J, Stolten DA (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934CrossRefGoogle Scholar
  19. 19.
    Shreya S, Sebastian CP (2018) An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg Chem Front 5:2060–2080CrossRefGoogle Scholar
  20. 20.
    Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326CrossRefGoogle Scholar
  21. 21.
    Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2010) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Materials for sustainable energy. Macmillan, London, pp 280–284CrossRefGoogle Scholar
  24. 24.
    Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152:J23–J26CrossRefGoogle Scholar
  25. 25.
    Raj IA, Vasu KI (1990) Transition metal-based hydrogen electrodes in alkaline solution- electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20:32–38CrossRefGoogle Scholar
  26. 26.
    Su J, Zhou J, Wang L, Liu C, Chen Y (2017) Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. Sci Bull 62(2017):633–644CrossRefGoogle Scholar
  27. 27.
    Gong M, Dai H (2015) A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res 8:23–39CrossRefGoogle Scholar
  28. 28.
    Dong Q, Meng Z, Ho C-L, Guo H, Yang W, Manners I, Xu L, Wong W-Y (2018) A molecular approach to magnetic metallic nanostructures from metallopolymer precursors. Chem Soc Rev 47:4934–4953PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:14942–14962CrossRefGoogle Scholar
  30. 30.
    Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45:1529–1541PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Li X, Hao X, Abudula A, Guan G (2016) Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A 4:11973–12000CrossRefGoogle Scholar
  32. 32.
    Ojha K, Saha S, Dagar P, Ganguli AK (2018) Nanocatalysts for hydrogen evolution reactions. Phys Chem Chem Phys 20:6777–6799PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Liu P, Rodriguez JA, Asakura T, Gomes J, Nakamura K (2005) Desulfurization reactions on Ni2P(001) and α-Mo2C(001) surfaces: complex role of P and C sites. J Phys Chem B 109:4575–4583PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Xiao P, Chen W, Wang X (2015) A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv Energy Mater 5:1500985CrossRefGoogle Scholar
  36. 36.
    Zhao H, Yuan Z-Y (2017) Transition metal–phosphorus-based materials for electrocatalytic energy conversion reactions. Catal Sci Technol 7:330–347CrossRefGoogle Scholar
  37. 37.
    Wang X, Kim H-M, Xiao Y, Sun Y-K (2016) Nanostructured metal phosphide-based materials for electrochemical energy storage. J Mater Chem A 4:14915–14931CrossRefGoogle Scholar
  38. 38.
    Vij V, Sultan S, Harzandi AM, Meena A, Tiwari JN, Lee W-G, Yoon T, Kim KS (2017) Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal 7:7196–7225CrossRefGoogle Scholar
  39. 39.
    Liu P, Rodriguez JA (2005) Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J Am Chem Soc 127:14871–14878PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S (2016) Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal 6:8069–8097CrossRefGoogle Scholar
  41. 41.
    Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt–phosphate oxygen-evolving compound. Chem Soc Rev 38:109–114PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Jin Z, Li P, Xiao D (2016) Metallic Co2P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall water-splitting. Green Chem 18:1459–1464CrossRefGoogle Scholar
  43. 43.
    Lasia A (2010) Hydrogen evolution reaction. In: Vielstich W, Lamm A, Gasteiger HA, Yokokawa H (eds) Handbook of Fuel Cells, Fundamentals, Technology and Applications, vol. 2, Fuel Cell Electrocatalysis, Chapter: Chapter 4.6. Wiley, New York, pp 414–440Google Scholar
  44. 44.
    Strmcnik D, Lopes PP, Genorio B, Stamenkovic VR, Markovic NM (2016) Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29:29–36CrossRefGoogle Scholar
  45. 45.
    Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Zhao W, Lu X, Selvaraj M, Wei W, Jiang Z, Ullah N, Liu J, Xie J (2018) MxP(M = Co/Ni)@carbon core–shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction. Nanoscale 210:9698–9706CrossRefGoogle Scholar
  47. 47.
    Paseka I (1995) Evolution of hydrogen and its sorption on remarkable active amorphous smooth Ni-P(x) electrodes. Electrochim Acta 40:1633–1640CrossRefGoogle Scholar
  48. 48.
    Feng L, Vrubel H, Bensimon M, Hu X (2014) Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Phys Chem Chem Phys 16:5917–5921PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Burchardt T (2001) Hydrogen evolution on NiPx alloys: the influence of sorbed hydrogen. Int J Hydrogen Energy 26:1193–1198CrossRefGoogle Scholar
  50. 50.
    Hu J, Zhang C, Meng X, Lin H, Hu C, Long X, Yang S (2017) Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds. J Mater Chem A 5:5995–6012CrossRefGoogle Scholar
  51. 51.
    Yan Y, Xia BY, Zhao B, Wang X (2016) A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J Mater Chem A 4:17587–17603CrossRefGoogle Scholar
  52. 52.
    Conway BE, Tilak BV (2002) Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta 47:3571–3594CrossRefGoogle Scholar
  53. 53.
    Sabatier P (1911) Hydrogénations et déshydrogénations par catalyse. Chem Ges 44:1984–2001CrossRefGoogle Scholar
  54. 54.
    Fu S, Zhu C, Song J, Engelhard MH, Li X, Du D, Lin Y (2016) Highly ordered mesoporous bimetallic phosphides as efficient oxygen evolution electrocatalysts. ACS Energy Lett 1:792–796CrossRefGoogle Scholar
  55. 55.
    Yu J, Li Q, Chen N, Xu C-Y, Zhen L, Wu J, Dravid VP (2016) Carbon-coated nickel phosphide nanosheets as efficient dual-electrocatalyst for overall water splitting. ACS Appl Mater Interfaces 8:27850–27858PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Sun Z, Zhu M, Fujitsuka M, Wang A, Shi C, Majima T (2017) Phase effect of NixPy hybridized with g-C3N4 for photocatalytic hydrogen generation. ACS Appl Mater Interfaces 9:30583–30590PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Tan Y, Liu P, Chen L, Cong W, Ito Y, Han J, Guo X, Tang Z, Fujita T, Hirata A, Chen MW (2014) Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv Mater 26:8023–8028PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Safizadeh F, Ghali E, Houlachi G (2015) Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—a review. Int J Hydrogen Energy 40:256–274CrossRefGoogle Scholar
  59. 59.
    Xu Y, Zhang B (2014) Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications. Chem Soc Rev 43:2439–2450PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Zhang J, Li CM (2012) Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem Soc Rev 41:7016–7031PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    McArthur MA, Jorge L, Coulombe S, Omanovic S (2014) Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte. J Power Source 266:365–373CrossRefGoogle Scholar
  62. 62.
    Lin Y, Zhang J, Pan Y, Liu Y (2017) Nickel phosphide nanoparticles decorated nitrogen and phosphorus Co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution. Appl Surf Sci 422:828–837CrossRefGoogle Scholar
  63. 63.
    Jin Z, Li P, Huang X, Zeng G, Jin Y, Zheng B, Xiao D (2014) Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. J Mater Chem A 2:18593–18599CrossRefGoogle Scholar
  64. 64.
    Zhang X, Huang L, Wang Q, Dong S (2017) Transformation of homobimetallic MOFs into nickel–cobalt phosphide/nitrogen-doped carbon polyhedral nanocages for efficient oxygen evolution electrocatalysis. J Mater Chem A 5:18839–18844CrossRefGoogle Scholar
  65. 65.
    Feng Y, Zhang H, Mu Y, Li W, Sun J, Wu K, Wang Y (2015) Monodisperse Sandwich-like coupled quasi-graphene sheets encapsulating Ni2P nanoparticles for enhanced lithium–ion batteries. Chem Eur J 21:9229–9235PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Carenco S, Surcin C, Morcrette M, Larcher D, Mézailles N, Boissière C, Sanchez C (2012) Improving the Li-electrochemical properties of monodisperse Ni2P nanoparticles by self-generated carbon coating. Chem Mater 24:688–697CrossRefGoogle Scholar
  67. 67.
    Moreno-Benito M, Agnolucci P, Papageorgiou LG (2017) Towards a sustainable hydrogen economy: optimisation-based framework for hydrogen infrastructure development. Comput Chem Eng 102:110–127CrossRefGoogle Scholar
  68. 68.
    Brandon NP, Kurban Z (2017) Clean energy and the hydrogen economy. Philos Trans R Soc A Math Phys Eng Sci 375:20160400CrossRefGoogle Scholar
  69. 69.
    Choquette Y, Brossard L, Lasia A, Menard H (1990) Study of the kinetics of hydrogen evolution reaction on raney nickel composite-coated electrode by AC impedance technique. J Electrochem Soc 137:1723–1730CrossRefGoogle Scholar
  70. 70.
    Elezovica NR, Jovica VD, Krstajic NV (2005) Kinetics of the hydrogen evolution reaction on Fe–Mo film deposited on mild steel support in alkaline solution. Electrochim Acta 50:5594–5601CrossRefGoogle Scholar
  71. 71.
    Conway BE, Gileadi E, Angerstein-Kozlowska H (1965) Significance of nonsteady-state AC and DC measurements in electrochemical adsorption kinetics. J Electrochem Soc 112:341–349CrossRefGoogle Scholar
  72. 72.
    Sheng W, Gasteiger HA, Shao-Horn Y (2010) Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 157:B1529–B1536CrossRefGoogle Scholar
  73. 73.
    Morales-Guio CG, Stern L-A, Hu X (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43(18):6555–6569PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Chen W-F, Muckerman JT, Fujita E (2013) Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun 49(79):8896–8909CrossRefGoogle Scholar
  75. 75.
    Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. J Catal Sci Technol 4:3800–3821CrossRefGoogle Scholar
  76. 76.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  77. 77.
    Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–1165CrossRefGoogle Scholar
  78. 78.
    Bockris JO, Reddy AKN, Gamboa-Aldeco ME (1998) Modern electrochemistry. Plenum, New YorkGoogle Scholar
  79. 79.
    Vesborg PCK, Seger B, Chorkendorff I (2015) Recent development in hydrogen evolution reaction catalysts and their practical implementation. J Phys Chem Lett 6:951–957PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Zhu Y-P, Xu X, Su H, Liu Y-P, Chen T, Yuan Z-Y (2015) Ultrafine metal phosphide nanocrystals in situ decorated on highly porous heteroatom-doped carbons for active electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 7:28369–28376PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Xiao M, Miao Y, Tian Y, Yan Y (2015) Synthesizing nanoparticles of Co–P–Se compounds as electrocatalysts for the hydrogen evolution reaction. Electrochim Acta 165:206–210CrossRefGoogle Scholar
  82. 82.
    Vrubel H, Moehl T, Grätzel M, Hu X (2013) Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chem Commun 49:8985–8987CrossRefGoogle Scholar
  83. 83.
    Long X, Qiu W, Wang Z, Wang Y, Yang S (2019) Recent advances in transition metal-based catalysts with heterointerfaces for energy conversion and storage. Mater Today Chem 11(2019):16–28CrossRefGoogle Scholar
  84. 84.
    Arun PM, Jagannathan M, Kadarkarai M (2018) Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. J Power Sources 398:9–26CrossRefGoogle Scholar
  85. 85.
    Jamesh MI (2016) Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J Power Sources 333:213–236CrossRefGoogle Scholar
  86. 86.
    Henkes AE, Schaak RE (2007) Trioctylphosphine: a General phosphorus source for the low-temperature conversion of metals into metal phosphides. Chem Mater 19:4234–4242CrossRefGoogle Scholar
  87. 87.
    Read CG, Callejas JF, Holder CF, Schaak RE (2016) General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Appl Mater Interfaces 8:12798–12803PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Prins R, Bussell ME (2012) Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett 142:1413–1436CrossRefGoogle Scholar
  89. 89.
    Fan X, Mao J, Zhu Y, Luo C, Suo L, Gao T, Han F, Liou S-C, Wang C (2015) Superior stable self-healing SnP3 anode for sodium–ion batteries. Adv Energy Mater 5:1500174CrossRefGoogle Scholar
  90. 90.
    Ahn SH, Manthiram A (2017) Direct growth of ternary Ni–Fe–P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting. J Mater Chem A 5:2496–2503CrossRefGoogle Scholar
  91. 91.
    Xu Y, Wu R, Zhang J, Shi Y, Zhang B (2013) Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun 49:6656–6658CrossRefGoogle Scholar
  92. 92.
    Feng Y, Yu XY, Paik U (2016) Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chem Commun 52:1633–1636CrossRefGoogle Scholar
  93. 93.
    Wang C, Jiang J, Zhou X, Wang W, Zuo J, Yang Q (2015) Alternative synthesis of cobalt monophosphide@C core–shell nanocables for electrochemical hydrogen production. J Power Sources 286:464–469CrossRefGoogle Scholar
  94. 94.
    Xiao J, Lv Q, Zhang Y, Zhang Z, Wang S (2016) One-step synthesis of nickel phosphide nanowire array supported on nickel foam with enhanced electrocatalytic water splitting performance. RSC Adv 6:107859–107864CrossRefGoogle Scholar
  95. 95.
    Ye P, Liu X, Iocozzia J, Yuan Y, Gu L, Xu G, Lin Z (2017) A highly stable non-noble metal Ni2P co-catalyst for increased H2 generation by g-C3N4 under visible light irradiation. J Mater Chem A 5:8493–8498CrossRefGoogle Scholar
  96. 96.
    Zhang X, Zhang S, Li J, Wang E (2017) One-step synthesis of well-structured NiS–Ni2P2S6 nanosheets on nickel foam for efficient overall water splitting. J Mater Chem A 5:22131–22136CrossRefGoogle Scholar
  97. 97.
    Wang M, Ma Z, Li J, Zhang Z, Tang B, Wang X (2018) Well-dispersed palladium nanoparticles on nickel–phosphorus nanosheets as efficient three-dimensional platform for superior catalytic glucose electro-oxidation and non-enzymatic sensing. J Colloid Interface Sci 511:355–364PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Xu J, Gao J, Qi Y, Wang C, Wang L (2018) Anchoring Ni2P on the UiO-66-NH2/g-C3N4-derived C-doped ZrO2/g-C3N4 heterostructure: highly efficient photocatalysts for H2 production from water splitting. ChemCatChem 10:3327–3335CrossRefGoogle Scholar
  99. 99.
    Ledendecker M, Krick-Calderón S, Papp C, Steinrück H-P, Antonietti M, Shalom M (2015) The synthesis of nanostructured Ni5P4 films and their use as a Non-noble bifunctional electrocatalyst for full water splitting. Angew Chem Int Ed 54:12361–12365CrossRefGoogle Scholar
  100. 100.
    Wang X, Li W, Xiong D, Liu L (2016) Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting. J Mater Chem A 4:5639–5646CrossRefGoogle Scholar
  101. 101.
    Luo J, Wang H, Su G, Tang Y, Liu H, Tian F, Li D (2017) Self-supported nickel phosphosulphide nanosheets for highly efficient and stable overall water splitting. J Mater Chem A 5:14865–14872CrossRefGoogle Scholar
  102. 102.
    Li Y, Zhang H, Jiang M, Kuang Y, Sun X, Duan X (2016) Ternary NiCoP nanosheet arrays: an excellent bifunctional catalyst for alkaline overall water splitting. Nano Res 9:2251–2259CrossRefGoogle Scholar
  103. 103.
    Wang P, Pu Z, Li Y, Wu L, Tu Z, Jiang M, Kou Z, Amiinu IS, Mu S (2017) Iron-doped nickel phosphide nanosheet arrays: an efficient bifunctional electrocatalyst for water splitting. ACS Appl Mater Interfaces 9:26001–26007PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Wang C, Ding T, Sun Y, Zhou X, Liu Y, Yang Q (2015) Ni12P5 nanoparticles decorated on carbon nanotubes with enhanced electrocatalytic and lithium storage properties. Nanoscale 7:19241–19249PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Lu Y, Tu J-P, Xiong Q-Q, Xiang J-Y, Mai Y-J, Zhang J, Qiao Y-Q, Wang X-L, Gu C-D, Mao SX (2012) Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries. Adv Funct Mater 22:3927–3935CrossRefGoogle Scholar
  106. 106.
    Chung Y-H, Jang I, Jang J-H, Park HS, Ham HC, Jang JH, Lee Y-K, Yoo SJ (2017) Anomalous in situ activation of carbon-supported Ni2P nanoparticles for oxygen evolving electrocatalysis in alkaline media. Sci Rep 7:8236PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Lu Y, Tu JP, Xiang JY, Wang XL, Zhang J, Mai YJ, Mao SX (2011) Improved electrochemical performance of self-assembled hierarchical nanostructured nickel phosphide as a negative electrode for lithium ion batteries. J Phys Chem C 115:23760–23767CrossRefGoogle Scholar
  108. 108.
    Lu Y, Tu J-p, Xiong Q-q, Qiao Y-q, Wang X-l, Gu C-d, Mao SX (2012) Synthesis of dinickel phosphide (Ni2P) for fast lithium-ion transportation: a new class of nanowires with exceptionally improved electrochemical performance as a negative electrode. RSC Adv 2:3430–3436CrossRefGoogle Scholar
  109. 109.
    Aso K, Hayashi A, Tatsumisago M (2011) Phase-selective synthesis of nickel phosphide in high-boiling solvent for all-solid-state lithium secondary batteries. Inorg Chem 50:10820–10824PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Lu Y, Tu J, Xiong Q, Qiao Y, Zhang J, Gu C, Wang X, Mao SX (2012) Carbon-decorated single-crystalline Ni2P nanotubes derived from Ni nanowire templates: a high-performance material for li-ion batteries. Chem Eur J 18:6031–6038PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Zeng D, Xu W, Ong W-J, Xu J, Ren H, Chen Y, Zheng H, Peng D-L (2018) Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: monodisperse sub–15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces. Appl Catal B Environ 221:47–55CrossRefGoogle Scholar
  112. 112.
    Tang K, Wang X, Wang M, Xie Y, Zhou J, Yan C (2017) Ni/Fe ratio dependence of catalytic activity in monodisperse ternary nickel iron phosphide for efficient water oxidation. ChemElectroChem 4:2150–2157CrossRefGoogle Scholar
  113. 113.
    Jiang J, Wang C, Li W, Yang Q (2015) One-pot synthesis of carbon-coated Ni5P4 nanoparticles and CoP nanorods for high-rate and high-stability lithium-ion batteries. J Mater Chem A 3:23345–23351CrossRefGoogle Scholar
  114. 114.
    Lu Y, Tu J-p, Gu C-d, Wang X-l, Mao SX (2011) In situ growth and electrochemical characterization versus lithium of a core/shell-structured Ni2P@C nanocomposite synthesized by a facile organic-phase strategy. J Mater Chem 21:17988–17997CrossRefGoogle Scholar
  115. 115.
    Pan Y, Liu Y, Zhao J, Yang K, Liang J, Liu D, Hu W, Liu D, Liu Y, Liu C (2015) Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J Mater Chem A 3:1656–1665CrossRefGoogle Scholar
  116. 116.
    Li W, Gao X, Wang X, Xiong D, Huang P-P, Song W-G, Bao X, Liu L (2016) From water reduction to oxidation: janus Co–Ni–P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000 h water splitting. J Power Sources 330:156–166CrossRefGoogle Scholar
  117. 117.
    Kucernak ARJ, Sundaram VNN (2014) Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium. J Mater Chem A 2:17435–17445CrossRefGoogle Scholar
  118. 118.
    Xin Y, Kan X, Gan L-Y, Zhang Z (2017) Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting. ACS Nano 11:10303–10312PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Wang M-Q, Ye C, Liu H, Xu M, Bao S-J (2018) Nanosized metal phosphides embedded in nitrogen-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values. Angew Chem 130:1981–1985CrossRefGoogle Scholar
  120. 120.
    Cai Z-x, Song X-h, Wang Y-r, Chen X (2015) Electrodeposition-assisted synthesis of Ni2P nanosheets on 3D graphene/Ni foam electrode and its performance for electrocatalytic hydrogen production. ChemElectroChem 2:1665–1671CrossRefGoogle Scholar
  121. 121.
    Chiang R-K, Chiang R-T (2007) Formation of hollow Ni2P nanoparticles based on the nanoscale kirkendall effect. Inorg Chem 46:369–371PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Wang J, Johnston-Peck AC, Tracy JB (2009) Nickel phosphide nanoparticles with hollow, solid, and amorphous structures. Chem Mater 21:4462–4467CrossRefGoogle Scholar
  123. 123.
    Hitihami-Mudiyanselage A, Arachchige MP, Seda T, Lawes G, Brock SL (2015) Synthesis and characterization of discrete FexNi2-xP nanocrystals (0 < x < 2): compositional effects on magnetic properties. Chem Mater 27:6592–6600CrossRefGoogle Scholar
  124. 124.
    Shi Y, Xu Y, Zhuo S, Zhang J, Zhang B (2015) Ni2P nanosheets/Ni foam composite electrode for long-lived and ph-tolerable electrochemical hydrogen generation. ACS Appl Mater Interfaces 7:2376–2384PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Yang D, Gu Y, Yu X, Lin Z, Xue H, Feng L (2018) Nanostructured Ni2P-C as an efficient catalyst for urea electrooxidation. ChemElectroChem 5(4):659–664CrossRefGoogle Scholar
  126. 126.
    Wang W, An T, Li G, Xia D, Zhao H, Yu JC, Wong PK (2017) Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation. Appl Catal B Environ 217:570–580CrossRefGoogle Scholar
  127. 127.
    Du W, Wei S, Zhou K, Guo J, Pang H, Qian X (2015) One-step synthesis and graphene-modification to achieve nickel phosphide nanoparticles with electrochemical properties suitable for supercapacitors. Mater Res Bull 61:333–339CrossRefGoogle Scholar
  128. 128.
    Bai Y, Zhang H, Fang L, Liu L, Qiu H, Wang Y (2015) Novel peapod array of Ni2P@graphitized carbon fiber composites growing on Ti substrate: a superior material for Li–ion batteries and the hydrogen evolution reaction. J Mater Chem A 3:5434–5441CrossRefGoogle Scholar
  129. 129.
    Pan Y, Yang N, Chen Y, Lin Y, Li Y, Liu Y, Liu C (2015) Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity. J Power Sources 297:45–52CrossRefGoogle Scholar
  130. 130.
    Liu S, Ma L, Zhang H, Ma C (2016) Facile preparation of Ni2P/ZnO core/shell composites by a chemical method and its photocatalytic performance. Mater Sci Eng B 207:33–38CrossRefGoogle Scholar
  131. 131.
    Liu S, Ma C, Ma L, Zhang H (2015) Synthesis of NiCoP hollow spheres and its electrochemical property. Chem Phys Lett 638:52–55CrossRefGoogle Scholar
  132. 132.
    Zhang Z, Liu S, Xiao J, Wang S (2016) Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage. J Mater Chem A 4:9691–9699CrossRefGoogle Scholar
  133. 133.
    Wei L, Goh K, Birer Ö, Karahan HE, Chang J, Zhai S, Chen X, Chen Y (2017) A hierarchically porous nickel–copper phosphide nano-foam for efficient electrochemical splitting of water. Nanoscale 9:4401–4408CrossRefGoogle Scholar
  134. 134.
    Xu J, Sousa JPS, Mordvinova NE, Costa JD, Petrovykh DY, Kovnir K, Lebedev OI, Kolen’ko YV (2018) Al-induced in situ formation of highly active nanostructured water-oxidation electrocatalyst based on Ni-phosphide. ACS Catal 8:2595–2600CrossRefGoogle Scholar
  135. 135.
    Wu J, Ge X, Li Z, Cao D, Xiao J (2017) Highly dispersed NiCoP nanoparticles on carbon nanotubes modified nickel foam for efficient electrocatalytic hydrogen production. Electrochim Acta 252:101–108CrossRefGoogle Scholar
  136. 136.
    Yu J, Li Q, Li Y, Xu C-Y, Zhen L, Dravid VP, Wu J (2016) Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv Funct Mater 26:7644–7651CrossRefGoogle Scholar
  137. 137.
    Liang Q, Zhong L, Du C, Zheng Y, Luo Y, Xu J, Li S, Yan Q (2018) Mosaic-structured cobalt nickel thiophosphate nanosheets incorporated N-doped carbon for efficient and stable electrocatalytic water splitting. Adv Funct Mater 28:1805075CrossRefGoogle Scholar
  138. 138.
    Yan L, Jiang H, Xing Y, Wang Y, Liu D, Gu X, Dai P, Li L, Zhao X (2018) Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. J Mater Chem A 6:1682–1691CrossRefGoogle Scholar
  139. 139.
    Fang X, Jiao L, Zhang R, Jiang H-L (2017) Porphyrinic metal–organic framework-templated Fe–Ni–P/reduced graphene oxide for efficient electrocatalytic oxygen evolution. ACS Appl Mater Interfaces 9:23852–23858PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Bai Y, Zhang H, Li X, Liu L, Xu H, Qiu H, Wang Y (2015) Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage. Nanoscale 7:1446–1453PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang J, Lim KH, Wang X (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 7:2624–2629CrossRefGoogle Scholar
  142. 142.
    Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE (2015) Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater 27:3769–3774CrossRefGoogle Scholar
  143. 143.
    Stoney GG, Parsons CA (1909) The tension of metallic films deposited by electrolysis. Proc R Soc Lond A 82:172–175CrossRefGoogle Scholar
  144. 144.
    De S, Zhang J, Luque R, Yan N (2016) Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ Sci 9:3314–3347CrossRefGoogle Scholar
  145. 145.
    Yu X-Y, Feng Y, Guan B, Lou XW, Paik U (2016) Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ Sci 9:1246–1250CrossRefGoogle Scholar
  146. 146.
    Jaccaud M, Leroux F, Millet JC (1989) New chlor-alkali activated cathodes. Mater Chem Phys 22:105–119CrossRefGoogle Scholar
  147. 147.
    Wu T, Zhang C, Zou G, Hu J, Zhu L, Cao X, Hou H, Ji X (2019) The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Sci Chin Mater 62:1127–1138CrossRefGoogle Scholar
  148. 148.
    Zhuang H, Tkalych AJ, Carter EA (2016) surface energy as a descriptor of catalytic activity. J Phys Chem C 120:23698–23706CrossRefGoogle Scholar
  149. 149.
    Xue N, Diao P (2017) Composite of few-layered MoS2 grown on carbon black: tuning the ratio of terminal to total sulfur in MoS2 for hydrogen evolution reaction. J Phys Chem C 121:14413–14425CrossRefGoogle Scholar
  150. 150.
    Fabbri E, Habereder A, Waltar K, Kӧtz K, Schmidt TJ (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821CrossRefGoogle Scholar
  151. 151.
    Schalenbach M, Kasian O, Mayrhofer KJJ (2018) An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation. Int J Hydrogen Energy 43:11932–11938CrossRefGoogle Scholar
  152. 152.
    Li Y, Zhang H, Xu T, Lu Z, Wu X, Wan P, Sun X, Jiang L (2015) Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv Funct Mater 25:1737–1744CrossRefGoogle Scholar
  153. 153.
    Lu Z, Zhu W, Yu X, Zhang H, Li Y, Sun X, Wang X, Wang H, Wang J, Luo J, Lei X, Jiang L (2014) Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv Mater 26:2683–2687PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Long X, Wang Z, Xiao S, An Y, Yang S (2016) Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater Today 19:213–226CrossRefGoogle Scholar
  155. 155.
    Yu L, Zhou H, Sun J, Qin F, Yu F, Bao J, Yu Y, Chen Y, Chen S, Ren Z (2017) Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ Sci 10:1820–1827CrossRefGoogle Scholar
  156. 156.
    Pu Z, Liu Q, Tang C, Asiri AM, Sun X (2014) Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 6:11031–11034PubMedCrossRefGoogle Scholar
  157. 157.
    Li P, Jin Z, Yang J, Jin Y, Xiao D (2016) Highly active 3D-nanoarray-supported oxygen-evolving electrode generated from cobalt-phytate nanoplates. Chem Mater 28:153–161CrossRefGoogle Scholar
  158. 158.
    Li Y, Yang S, Li H, Li G, Li M, Shen L, Yang Z, Zhou A (2016) Electrodeposited ternary iron–cobalt–nickel catalyst on nickel foam for efficient water electrolysis at high current density. Colloid Surf A Physicochem Eng Asp 506:694–702CrossRefGoogle Scholar
  159. 159.
    Lu X, Zhao C (2015) Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat Commun 6:6616–6622PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Wang X, Li W, Xiong D, Petrovykh DY, Liu L (2016) Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv Funct Mater 26:4067–4077CrossRefGoogle Scholar
  161. 161.
    Wang J, Zhong H-x, Wang Z-l, Meng F-l, Zhang X-b (2016) Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 10:2342–2348PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Pérez-Alonso FJ, Adán C, Rojas S, Peña MA, Fierro JLG (2014) Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium. Int J Hydrogen Energy 39:5204–5212CrossRefGoogle Scholar
  163. 163.
    Ledendecker M, Calderón SK, Papp C, Steinrück H-P, Antonietti M, Shalom M (2015) The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew Chem Int Ed 127:12538–12542CrossRefGoogle Scholar
  164. 164.
    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Fei H, Dong J, Arellano-Jiménez MJ, Ye G, Kim ND, Samuel ELG, Peng Z, Zhu Z, Qin F, Bao J, Yacaman MJ, Ajayan PM, Chen D, Tour JM (2015) Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 6:8668PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Li J, Yan M, Zhou X, Huang Z-Q, Xia Z, Chang C-R, Ma Y, Qu Y (2016) Mechanistic insights on ternary Ni2-xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Adv Funct Mater 26:6785–6796CrossRefGoogle Scholar
  167. 167.
    Li H, Yu K, Li C, Tang Z, Guo B, Lei X, Fu H, Zhu Z (2016) Charge-transfer induced high efficient hydrogen evolution of MoS2/graphene cocatalyst. Sci Rep 5:18730CrossRefGoogle Scholar
  168. 168.
    Lu Y, Wang X, Mai Y, Xiang J, Zhang H, Li L, Gu C, Tu J, Mao SX (2012) Ni2P/graphene sheets as anode materials with enhanced electrochemical properties versus lithium. J Phys Chem C 116:22217–22225CrossRefGoogle Scholar
  169. 169.
    Du C, Yang L, Yang F, Cheng G, Luo W (2017) Nest-like NiCoP for highly efficient overall water splitting. ACS Catal 7:4131–4137CrossRefGoogle Scholar
  170. 170.
    Sun J, Chen Y, Ren Z, Fu H, Xiao Y, Wang J, Tian G (2017) Self-supported NiS nanoparticle-coupled Ni2P nanoflake array architecture: an advanced catalyst for electrochemical hydrogen evolution. ChemElectroChem 4:1341–1348CrossRefGoogle Scholar
  171. 171.
    Liang H, Gandi AN, Anjum DH, Wang X, Schwingenschlögl U, Alshareef HN (2016) Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett 16:7718–7725PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Wang X-D, Chen H-Y, Xu Y-F, Liao J-F, Chen B-X, Rao H-S, Kuang D-B, Su C-Y (2017) Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. J Mater Chem A 5:7191–7199CrossRefGoogle Scholar
  173. 173.
    Xing J, Li H, Cheng MM-C, Geyer SM, Ng KYS (2016) Electro-synthesis of 3D porous hierarchical Ni–Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting. J Mater Chem A 4:13866–13873CrossRefGoogle Scholar
  174. 174.
    Yan L, Cao L, Dai P, Gu X, Liu D, Li L, Wang Y, Zhao X (2017) Metal-organic frameworks derived nanotube of nickel–cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv Funct Mater 27:1703455CrossRefGoogle Scholar
  175. 175.
    Wei X, Zhang Y, He H, Peng L, Xiao S, Yao S, Xiao P (2019) Carbon-incorporated porous honeycomb NiCoFe phosphide nanospheres derived from a MOF precursor for overall water splitting. Chem Commun 55:10896–10899PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Ray C, Lee SC, Jin B, Kundu A, Park JH, Jun SC (2018) Stacked porous iron-doped nickel cobalt phosphide nanoparticle: an efficient and stable water splitting electrocatalyst. ACS Sustain Chem Eng 6:6146–6156CrossRefGoogle Scholar
  177. 177.
    Li H, Wang W, Gong Z, Yu Y, Piao L, Chen H, Xia J (2015) Shape-controlled synthesis of nickel phosphide nanocrystals and their application as hydrogen evolution reaction catalyst. J Phys Chem Solids 80:22–25CrossRefGoogle Scholar
  178. 178.
    Zhou R, Zhang J, Chen Z, Han X, Zhong C, Hu W, Deng Y (2017) Phase and composition controllable synthesis of nickel phosphide-based nanoparticles via a low-temperature process for efficient electrocatalytic hydrogen evolution. Electrochim Acta 258:866–875CrossRefGoogle Scholar
  179. 179.
    Brown DE, Mahmood MN, Turner AK, Hall SM, Fogarty PO (1982) Low overvoltage electrocatalysts for hydrogen evolving electrodes. Int J Hydrogen Energy 7(5):405–410CrossRefGoogle Scholar
  180. 180.
    Wang S, Zhang L, Li X, Li C, Zhang R, Zhang Y, Zhu H (2017) Sponge-like nickel phosphide–carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Res 10(2):415–425CrossRefGoogle Scholar
  181. 181.
    Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238–240CrossRefGoogle Scholar
  182. 182.
    Shi Z, Nie K, Shao Z-J, Gao B, Lin H, Zhang H, Liu B, Wang Y, Zhang Y, Sun X, Cao X-M, Hu P, Gao Q, Tang Y (2017) Phosphorus-Mo2C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy Environ Sci 10:1262–1271CrossRefGoogle Scholar
  183. 183.
    Li Y, Jiang Z, Huang J, Zhang X, Chen J (2017) Template-synthesis and electrochemical properties of urchin-like NiCoP electrocatalyst for hydrogen evolution reaction. Electrochim Acta 249:301–307CrossRefGoogle Scholar
  184. 184.
    Zhang Z, Hao J, Yang W, Tang J (2016) Iron triad (Fe, co, Ni) trinary phosphide nanosheet arrays as high-performance bifunctional electrodes for full water splitting in basic and neutral conditions. RSC Adv 6:9647–9655CrossRefGoogle Scholar
  185. 185.
    Wang X, Tong R, Wang Y, Tao H, Zhang Z, Wang H (2016) Surface roughening of nickel cobalt phosphide nanowire arrays/Ni foam for enhanced hydrogen evolution activity. ACS Appl Mater Interfaces 8:34270–34279PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Wu R, Xiao B, Gao Q, Zheng Y-R, Zheng X-S, Zhu J-F, Gao M-R, Yu S-H (2018) A janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting. Angew Chem 130:15671–15675CrossRefGoogle Scholar
  187. 187.
    Pan Y, Chen Y, Lin Y, Cui P, Sun K, Liu Y, Liu C (2016) Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution. J Mater Chem A 4:14675–14686CrossRefGoogle Scholar
  188. 188.
    Tian J, Chen J, Liu J, Tian Q, Chen P (2018) Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy 48:284–291CrossRefGoogle Scholar
  189. 189.
    Han G-Q, Li X, Xue J, Dong B, Shang X, Hu W-H, Liu Y-R, Chi J-Q, Yan K-L, Chai Y-M, Liu C-G (2017) Electrodeposited hybrid Ni–P/MoSx film as efficient electrocatalyst for hydrogen evolution in alkaline media. Int J Hydrogen Energy 42:2952–2960CrossRefGoogle Scholar
  190. 190.
    Yu F, Zhou H, Huang Y, Sun J, Qin F, Bao J, Goddard WA, Chen S, Ren Z (2018) High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat Commun 9:2551PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Cao M, Xue Z, Niu J, Qin J, Sawangphruk M, Zhang X, Liu R (2018) Facile electrodeposition of Ni–Cu–P dendrite nanotube films with enhanced hydrogen evolution reaction activity and durability. ACS Appl Mater Interfaces 10:35224–35233PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Boppella R, Tan J, Yang W, Moon J (2019) Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv Funct Mater 29:1807976CrossRefGoogle Scholar
  193. 193.
    Xuan C, Peng Z, Xia K, Wang J, Xiao W, Lei W, Gong M, Huang T, Wang D (2017) Self-supported ternary Ni–Fe–P nanosheets derived from metal-organic frameworks as efficient overall water splitting electrocatalysts. Electrochim Acta 258:423–432CrossRefGoogle Scholar
  194. 194.
    Zhang H, Li X, Hähnel A, Naumann V, Lin C, Azimi S, Schweizer SL, Maijenburg AW, Wehrspohn RB (2018) Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv Funct Mater 28:1706847CrossRefGoogle Scholar
  195. 195.
    Zhang T, Yang K, Wang C, Li S, Zhang Q, Chang X, Li J, Li S, Jia S, Wang J, Fu L (2018) Nanometric Ni5P4 clusters nested on NiCo2O4 for efficient hydrogen production via alkaline water electrolysis. Adv Energy Mater 8:1801690CrossRefGoogle Scholar
  196. 196.
    Chu S, Chen W, Chen G, Huang J, Zhang R, Song C, Wang X, Li C, Ostrikov K (2019) Holey Ni–Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution. Appl Catal B Environ 243:537–545CrossRefGoogle Scholar
  197. 197.
    Zhang R, Wang X, Yu S, Wen T, Zhu X, Yang F, Sun X, Wang X, Hu W (2017) Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv Mater 29:1605502CrossRefGoogle Scholar
  198. 198.
    Mo Q, Zhang W, He L, Yu X, Gao Q (2019) Bimetallic Ni2-xCoxP/N-doped carbon nanofibers: solid-solution-alloy engineering toward efficient hydrogen evolution. Appl Catal B Environ 244:620–627CrossRefGoogle Scholar
  199. 199.
    Bachvarov V, Lefterova E, Rashkov R (2016) Electrodeposited NiFeCo and NiFeCoP alloy cathodes for hydrogen evolution reaction in alkaline medium. Int J Hydrogen Energy 41:12762–12771CrossRefGoogle Scholar
  200. 200.
    Xu W, Zhu S, Liang Y, Cui Z, Yang X, Inoue A (2018) A nanoporous metal phosphide catalyst for bifunctional water splitting. J Mater Chem A 6:5574–5579CrossRefGoogle Scholar
  201. 201.
    Han A, Chen H, Zhang H, Sun Z, Du P (2016) Ternary metal phosphide nanosheets as a highly efficient electrocatalyst for water reduction to hydrogen over a wide pH range from 0 to 14. J Mater Chem A 4:10195–10202CrossRefGoogle Scholar
  202. 202.
    Liang X, Zheng B, Chen L, Zhang J, Zhuang Z, Chen B (2017) MOF-derived formation of Ni2P–CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting. ACS Appl Mater Interfaces 9:23222–23229PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Mishra IK, Zhou H, Sun J, Qin F, Dahal K, Bao J, Chen S, Ren Z (2018) Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy Environ Sci 11:2246–2252CrossRefGoogle Scholar
  204. 204.
    Wang X, Zhou H, Zhang D, Pi M, Feng J, Chen S (2018) Mn-doped NiP2 nanosheets as an efficient electrocatalyst for enhanced hydrogen evolution reaction at all pH values. J Power Sources 387:1–8CrossRefGoogle Scholar
  205. 205.
    Wang J-G, Hua W, Li M, Liu H, Shao M, Wei B (2018) Structurally engineered hyperbranched NiCoP arrays with superior electrocatalytic activities toward highly efficient overall water splitting. ACS Appl Mater Interfaces 10:41237–41245PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Zhang W, Zou Y, Liu H, Chen S, Wang X, Zhang H, She X, Yang D (2019) Single-crystalline (FexNi1−x)2P nanosheets with dominant 011¯1¯ facets: efficient electrocatalysts for hydrogen evolution reaction at all pH values. Nano Energy 56:813–822CrossRefGoogle Scholar
  207. 207.
    Tong M, Wang L, Yu P, Liu X, Fu H (2018) 3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Front Chem Sci Eng 12:417–424CrossRefGoogle Scholar
  208. 208.
    Xuan C, Wang J, Xia W, Peng Z, Wu Z, Lei W, Xia K, Xin HL, Wang D (2017) Porous structured Ni–Fe–P nanocubes derived from a prussian blue analogue as an electrocatalyst for efficient overall water splitting. ACS Appl Mater Interfaces 9:26134–26142PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Ge Y, Dong P, Craig SR, Ajayan PM, Ye M, Shen J (2018) Transforming nickel hydroxide into 3D prussian blue analogue array to obtain Ni2P/Fe2P for efficient hydrogen evolution reaction. Adv Energy Mater 8:1800484CrossRefGoogle Scholar
  210. 210.
    Jiao C, Hassan M, Bo X, Zhou M (2018) Co0.5Ni0.5P nanoparticles embedded in carbon layers for efficient electrochemical water splitting. J Alloys Compd 764:88–95CrossRefGoogle Scholar
  211. 211.
    Du Y, Li Z, Liu Y, Yang Y, Wang L (2018) Nickel-iron phosphides nanorods derived from bimetallic-organic frameworks for hydrogen evolution reaction. Appl Surf Sci 457:1081–1086CrossRefGoogle Scholar
  212. 212.
    Li J, Wei G, Zhu Y, Xi Y, Pan X, Ji Y, Zatovsky IV, Han W (2017) Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J Mater Chem A 5:14828–14837CrossRefGoogle Scholar
  213. 213.
    Liu J, Wang Z, David J, Llorca J, Li J, Yu X, Shavel A, Arbiol J, Meyns M, Cabot A (2018) Colloidal Ni2−xCoxP nanocrystals for the hydrogen evolution reaction. J Mater Chem A 6:11453–11462CrossRefGoogle Scholar
  214. 214.
    Liu T, Yan X, Xi P, Chen J, Qin D, Shan D, Devaramani S, Lu X (2017) Nickel–cobalt phosphide nanowires supported on Ni foam as a highly efficient catalyst for electrochemical hydrogen evolution reaction. Int J Hydrogen Energy 42:14124–14132CrossRefGoogle Scholar
  215. 215.
    Elias L, Hegde AC (2016) Synthesis and characterization of Ni–P–Ag composite coating as efficient electrocatalyst for alkaline hydrogen evolution reaction. Electrochim Acta 219:377–385CrossRefGoogle Scholar
  216. 216.
    Zhang F, Menga H, Zhang W, Wang M, Li J, Wang X (2018) Nickel phosphide decorated Pt nanocatalyst with enhanced electrocatalytic properties toward common small organic molecule oxidation and hydrogen evolution reaction: a strengthened composite supporting effect. Int J Hydrogen Energy 43:3203–3215CrossRefGoogle Scholar
  217. 217.
    Shervedani RK, Kazemi SH, Lasia A, Mehrjerdi HRZ (2005) Electrocatalytic behavior of thermally deposited RuO2 into the microporous Raney nickel electrode (Ni–Zn–P–RuO2) towards the HER. J New Mater Electrochem Syst 8:213–220Google Scholar
  218. 218.
    Cheng C, Shah SSA, Najam T, Qi X, Wei Z (2018) Improving the electrocatalytic activity for hydrogen evolution reaction by lowering the electrochemical impedance of RuO2/Ni-P. Electrochim Acta 260:358–364CrossRefGoogle Scholar
  219. 219.
    Liu S, Liu Q, Lv Y, Chen B, Zhou Q, Wang L, Zheng Q, Che C, Chen C (2017) Ru decorated with NiCoP: an efficient and durable hydrogen evolution reaction electrocatalyst in both acidic and alkaline conditions. Chem Commun 53:13153–13156CrossRefGoogle Scholar
  220. 220.
    Liu Y, Liu S, Wang Y, Zhang Q, Gu L, Zhao S, Xu D, Li Y, Bao J, Dai Z (2018) Ru modulation effects in the synthesis of unique rod-like Ni@Ni2P − Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance. J Am Chem Soc 140:2731–2734PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Fang Z, Peng L, Qian Y, Zhang X, Xie Y, Cha JJ, Yu G (2018) Dual tuning of Ni–Co–A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J Am Chem Soc 140:5241–5247PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Song B, Li K, Yin Y, Wu T, Dang L, Cabán-Acevedo M, Han J, Gao T, Wang X, Zhang Z, Schmidt JR, Xu P, Jin S (2017) Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal 7:8549–8557CrossRefGoogle Scholar
  223. 223.
    Zhang H, Jiang H, Hu Y, Jiang H, Li C (2017) Integrated Ni-P-S nanosheets array as superior electrocatalysts for hydrogen generation. Green Energy Environ 2:112–118CrossRefGoogle Scholar
  224. 224.
    Zhou Y, Li T, Xi S, He C, Yang X, Wu H (2018) One-step synthesis of self-standing Ni3S2/Ni2P heteronanorods on nickel foam for efficient electrocatalytic hydrogen evolution over a wide pH range. ChemCatChem 10(23):5487–5495CrossRefGoogle Scholar
  225. 225.
    Morales-Guio CG, Stern L-A, Hu X (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43:6555–6569PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Xiao P, Yan Y, Ge X, Liu Z, Wang JY, Wang X (2014) Investigation of molybdenum carbide nano-rod as an efficient and durable electrocatalyst for hydrogen evolution in acidic and alkaline media. Appl Catal B 2014:154–155, 232–237CrossRefGoogle Scholar
  227. 227.
    Wan C, Regmi YN, Leonard BM (2014) Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed 53:6407–6410CrossRefGoogle Scholar
  228. 228.
    Zhong Y, Xia X, Shi F, Zhan J, Tu J, Fan HJ (2016) Transition metal carbides and nitrides in energy storage and conversion. Adv Sci 3:1500286CrossRefGoogle Scholar
  229. 229.
    Chang J, Li K, Wu Z, Ge J, Liu C, Xing W (2018) Sulfur-doped nickel phosphide nanoplates arrays: a monolithic electrocatalyst for efficient hydrogen evolution reactions. ACS Appl Mater Interfaces 10:26303–26311PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Zhuo J, Cabán-Acevedo M, Liang H, Samad L, Ding Q, Fu Y, Li M, Jin S (2015) High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures. ACS Catal 5:6355–6361CrossRefGoogle Scholar
  231. 231.
    Zhang X, Li J, Sun Y, Li Z, Liu P, Liu Q, Tang L, Guo J (2018) N-doped reduced graphene oxide supported mixed Ni2P-CoP realize efficient overall water electrolysis. Electrochim Acta 282:626–633CrossRefGoogle Scholar
  232. 232.
    Gao Z, Liu F-q, Wang L, Luo F (2019) Hierarchical Ni2P@NiFeAlOx nanosheet arrays as bifunctional catalysts for superior overall water splitting. Inorg Chem 58:3247–3255PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Han L, Yu T, Lei W, Liu W, Feng K, Ding Y, Jiang G, Xu P, Chen Z (2017) Nitrogen doped carbon nanocones encapsulating with nickel–cobalt mixed phosphides for enhanced hydrogen evolution reaction. J Mater Chem A 5:16568–16572CrossRefGoogle Scholar
  234. 234.
    Pan Y, Hu W, Liu D, Liu Y, Liu C (2015) Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:13087–13094CrossRefGoogle Scholar
  235. 235.
    Fournier J, Brossard L, Tilquin JY, Coté R, Dodelet JP, Guay D, Ménard H (1996) Hydrogen evolution reaction in alkaline solution: catalytic influence of Pt supported on graphite vs. Pt inclusions in graphite. J Electrochem Soc 143:919–926CrossRefGoogle Scholar
  236. 236.
    Anantharaj S, Karthik PE, Subramanian B, Kundu S (2016) Pt nanoparticle anchored molecular self-assemblies of DNA: an extremely stable and efficient HER electrocatalyst with ultralow Pt content. ACS Catal 6:4660–4672CrossRefGoogle Scholar
  237. 237.
    Feng Y, OuYang Y, Peng L, Qiu H, Wang H, Wang Y (2015) Quasi-graphene-envelope Fe-doped Ni2P sandwiched nanocomposites for enhanced water splitting and lithium storage performance. J Mater Chem A 3:9587–9594CrossRefGoogle Scholar
  238. 238.
    Pu Z, Zhang C, Amiinu IS, Li W, Wu L, Mu S (2017) General strategy for the synthesis of transition-metal phosphide/N-doped carbon frameworks for hydrogen and oxygen evolution. ACS Appl Mater Interfaces 9(19):16187–16193PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Zou X, Su J, Silva R, Goswami A, Sathe BR, Asefa T (2013) Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chem Commun 49:7522–7524CrossRefGoogle Scholar
  240. 240.
    Han A, Jin S, Chen H, Ji H, Sun Z, Du P (2015) A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0–14. J Mater Chem A 3:1941–1946CrossRefGoogle Scholar
  241. 241.
    Li J, Xia Z, Zhou X, Qin Y, Ma Y, Qu Y (2017) Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Res 10:814–825CrossRefGoogle Scholar
  242. 242.
    Li Z-p, Shang J-p, Su C-n, Zhang S-b, Wu M-x, Guo Y (2018) Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions. J Fuel Chem Technol 46:473–478CrossRefGoogle Scholar
  243. 243.
    Du Y, Pan G, Wang L, Song Y (2019) CoxNiyP embedded in nitrogen-doped porous carbon on Ni foam for efficient hydrogen evolution. Appl Surf Sci 469:61–67CrossRefGoogle Scholar
  244. 244.
    Bao T, Song L, Zhang S (2018) Synthesis of carbon quantum dot-doped NiCoP and enhanced electrocatalytic hydrogen evolution ability and mechanism. Chem Eng J 351:189–194CrossRefGoogle Scholar
  245. 245.
    Huang X, Zhao Y, Ao Z, Wang G (2014) Micelle-template synthesis of nitrogen-doped mesoporous graphene as an efficient metal-free electrocatalyst for hydrogen production. Sci Rep 4:7557PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Janas D, Koziol KK (2014) A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale 6:3037–3045PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Deng J, Ren P, Deng D, Bao X (2015) Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed 54(7):2100–2104CrossRefGoogle Scholar
  248. 248.
    Kuhn AT, Mortimer CJ, Bond GC, Lindley J (1972) A critical analysis of correlations between the rate of the electrochemical hydrogen evolution reaction and physical properties of the elements. J Electroanal Chem 34:1–14CrossRefGoogle Scholar
  249. 249.
    Kibsgaard J, Tsai C, Chan K, Benck JD, Nørskov JK, Abild-Pedersen F, Jaramillo TF (2015) Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ Sci 8:3022–3029CrossRefGoogle Scholar
  250. 250.
    Tang C, Gan L, Zhang R, Lu W, Jiang X, Asiri AM, Sun X, Wang J, Chen L (2016) Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight. Nano Lett 16:6617–6621PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Liang D, Jiang H, Xu Q, Luo J, Hu Y, Li C (2018) Modulating the volmer step by mof derivatives assembled with heterogeneous Ni2P-CoP nanocrystals in alkaline hydrogen evolution reaction. J Electrochem Soc 165:F1286–F1291CrossRefGoogle Scholar
  252. 252.
    Cai Z, Wu A, Yan H, Xiao Y, Chen C, Tian C, Wang L, Wang R, Fu H (2018) Hierarchical whisker-on-sheet NiCoP with adjustable surface structure for efficient hydrogen evolution reaction. Nanoscale 10:7619–7629PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Zhang L, Ren X, Guo X, Liu Z, Asiri AM, Li B, Chen L, Sun X (2018) Efficient hydrogen evolution electrocatalysis at alkaline pH by interface engineering of Ni2P–CeO2. Inorg Chem 57:548–552PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Pan Y, Liu Y, Liu C (2015) Nanostructured nickel phosphide supported on carbon nanospheres: synthesis and application as an efficient electrocatalyst for hydrogen evolution. J Power Sources 285:169–177CrossRefGoogle Scholar
  255. 255.
    Jeoung S, Seo B, Hwang JM, Joo SH, Moon HR (2017) Direct conversion of coordination compounds into Ni2P nanoparticles entrapped in 3D mesoporous graphene for an efficient hydrogen evolution reaction. Mater Chem Front 1(9):1656–1978Google Scholar
  256. 256.
    Wang A-L, Lin J, Xu H, Tong Y-X, Li G-R (2016) Ni2P–CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution. J Mater Chem A 4:16992–16999CrossRefGoogle Scholar
  257. 257.
    Huang H, Yu C, Zhao C, Han X, Yang J, Liu Z, Li S, Zhang M, Qiu J (2017) Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy 34:472–480CrossRefGoogle Scholar
  258. 258.
    Li Y, Liu J, Chen C, Zhang X, Chen J (2017) Preparation of NiCoP hollow quasi-polyhedra and their electrocatalytic properties for hydrogen evolution in alkaline solution. ACS Appl Mater Interfaces 9:5982–5991PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Song HJ, Yoon H, Ju B, Lee G-H, Kim D-W (2018) 3D architectures of quaternary Co–Ni–S–P/graphene hybrids as highly active and stable bifunctional electrocatalysts for overall water splitting. Adv Energy Mater 8:1870142CrossRefGoogle Scholar
  260. 260.
    Zhang L, Chang C, Hsu C-W, Chang C-W, Lu S-Y (2017) Hollow nanocubes composed of well-dispersed mixed metal-rich phosphides in N-doped carbon as highly efficient and durable electrocatalysts for the oxygen evolution reaction at high current densities. J Mater Chem A 5:19656–19663CrossRefGoogle Scholar
  261. 261.
    Zhou Q, Chen Z, Zhong L, Li X, Sun R, Feng J, Wang G-C, Peng X (2018) Solvothermally controlled synthesis of organic–inorganic hybrid nanosheets as efficient pH-universal hydrogen-evolution electrocatalysts. Chemsuschem 11:2828–2836PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Mu J, Li J, Yang E-C, Zhao X-J (2018) Three-dimensional hierarchical nickel cobalt phosphide nanoflowers as an efficient electrocatalyst for the hydrogen evolution reaction under both acidic and alkaline conditions. ACS Appl Energy Mater 1:3742–3751CrossRefGoogle Scholar
  263. 263.
    Liu X, Wen B, Guo R, Meng J, Liu Z, Yang W, Niu C, Li Q, Mai L (2018) A porous nickel cyclotetraphosphate nanosheet as a new acid-stable electrocatalyst for efficient hydrogen evolution. Nanoscale 10:9856–9861PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Li Y, Cai P, Ci S, Wen Z (2017) Strongly coupled 3D nanohybrids with Ni2P/carbon nanosheets as pH-universal hydrogen evolution reaction electrocatalysts. ChemElectroChem 4:340–344CrossRefGoogle Scholar
  265. 265.
    Sun Y, Hang L, Shen Q, Zhang T, Li H, Zhang X, Lyu X, Li Y (2017) Mo doped Ni2P nanowire arrays: an efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values. Nanoscale 9:16674–16679PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Dou X, Liu W, Liu Q, Niu Z (2017) Nickel phosphide nanorod arrays vertically grown on Ni foam as high-efficiency electrocatalyst for the hydrogen evolution reaction. Chin J Chem 35:405–409CrossRefGoogle Scholar
  267. 267.
    Yu SH, Chen W, Wang H, Pan H, Chua DHC (2019) Highly stable tungsten disulfide supported on a self-standing nickel phosphide foam as a hybrid electrocatalyst for efficient electrolytic hydrogen evolution. Nano Energy 55:193–202CrossRefGoogle Scholar
  268. 268.
    You B, Jiang N, Sheng M, Bhushan MW, Sun Y (2016) Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal. 6:714–721CrossRefGoogle Scholar
  269. 269.
    Jiang P, Liu Q, Sun X (2014) NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 6:13440–13445PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Pu Z, Xue Y, Li W, Amiinu IS, Mu S (2017) Efficient water splitting catalyzed by flexible NiP2 nanosheet array electrodes under both neutral and alkaline solutions. New J Chem 41:2154–2159CrossRefGoogle Scholar
  271. 271.
    Chaudhari NK, Jin H, Kim B, Lee K (2017) Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9:12231–12247PubMedCrossRefPubMedCentralGoogle Scholar
  272. 272.
    Gu W, Gan L, Zhang X, Wang E, Wang J (2017) Theoretical designing and experimental fabricating unique quadruple multimetallic phosphides with remarkable hydrogen evolution performance. Nano Energy 34:421–427CrossRefGoogle Scholar
  273. 273.
    Faber MS, Jin S (2014) Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ Sci 7:3519–3542CrossRefGoogle Scholar
  274. 274.
    Lu Y, Wang T, Li X, Zhang G, Xue H, Pang H (2016) Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. RSC Adv 6:87188–87212CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Silicon Material, School of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Mechanical Design and Materials Department, Faculty of Energy EngineeringAswan UniversityAswanEgypt

Personalised recommendations