Advertisement

Topics in Current Chemistry

, 377:25 | Cite as

Mechanical Properties of Shaped Metal–Organic Frameworks

  • Bhuvan B. Shah
  • Tanay Kundu
  • Dan ZhaoEmail author
Review
Part of the following topical collections:
  1. Metal-Organic Framework: From Design to Applications

Abstract

Metal–organic frameworks (MOFs) have gathered tremendous interest among researchers for their potential applications such as in storage and separation. While some progress has been made towards shaping of MOFs to realize industrial applications, the mechanical properties of MOFs remain more or less unexplored. Over the last decade, this area has witnessed a steady growth in terms of understanding the mechanical stability of MOFs and its consequence on their performance. In this review, the mechanical properties of the reported macroscopic shaped MOF structures (mainly granules, pellets, tablets, monoliths, and gels) are discussed. Conclusions are then drawn to determine which shapes and shaping techniques promise to meet industrial requirements on the basis of mechanical stability. Finally, future research directions are proposed to improve our understanding, and possibly enhance stability, by correlating the properties from microscopic single-crystalline level to the industrially relevant macroscopic polycrystalline scale.

Keywords

Metal–organic frameworks Mechanical properties Shaping Granules Pellets Tablets Monoliths Gels 

Notes

Acknowledgments

This work was supported by the National Research Foundation Singapore (NRF2018-NRF-ANR007 POCEMON), the Ministry of Education, Singapore (MOE AcRF Tier 1 R-279-000-540-114), and the Agency for Science, Technology and Research (PSF 1521200078, IRG A1783c0015, and IAF-PP A1789a0024).

References

  1. 1.
    Bétard A, Fischer RA (2012) Metal–organic framework thin films: from fundamentals to applications. Chem Rev 112(2):1055–1083PubMedGoogle Scholar
  2. 2.
    Li Y, Zou B, Xiao A, Zhang H (2017) Advances of metal–organic frameworks in energy and environmental applications. Chin J Chem 35(10):1501–1511Google Scholar
  3. 3.
    The Cambridge Crystallographic Data Centre (CCDC) (2018) The Cambridge Structural Database Data Update. https://www.ccdc.cam.ac.uk/support-and-resources/ccdcresources/csd-2017-updates/. Accessed 11 Dec 2018
  4. 4.
    Valizadeh B, Nguyen TN, Stylianou KC (2018) Shape engineering of metal–organic frameworks. Polyhedron 145:1–15Google Scholar
  5. 5.
    Grande CA, Blom R, Spjelkavik A, Moreau V, Payet J (2017) Life-cycle assessment as a tool for eco-design of metal-organic frameworks (MOFs). Sustain Mater Technol 14:11–18Google Scholar
  6. 6.
    Yilmaz B, Trukhan N, Müller U (2012) Industrial outlook on zeolites and metal organic frameworks. Chin J Catal 33(1):3–10Google Scholar
  7. 7.
    Ren J, Dyosiba X, Musyoka NM, Langmi HW, Mathe M, Liao S (2017) Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord Chem Rev 352:187–219Google Scholar
  8. 8.
    Czaja AU, Trukhan N, Müller U (2009) Industrial applications of metal–organic frameworks. Chem Soc Rev 38(5):1284–1293PubMedGoogle Scholar
  9. 9.
    Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR (2017) New synthetic routes towards MOF production at scale. Chem Soc Rev 46(11):3453–3480PubMedGoogle Scholar
  10. 10.
    Iveson SM, Litster JD, Hapgood K, Ennis BJ (2001) Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol 117(1):3–39Google Scholar
  11. 11.
    Bazer-Bachi D, Assié L, Lecocq V, Harbuzaru B, Falk V (2014) Towards industrial use of metal–organic framework: impact of shaping on the MOF properties. Powder Technol 255:52–59Google Scholar
  12. 12.
    Ren J, Musyoka NM, Langmi HW, Swartbooi A, North BC, Mathe M (2015) A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications. Int J Hydrogen Energy 40(13):4617–4622Google Scholar
  13. 13.
    Nandasiri MI, Jambovane SR, McGrail BP, Schaef HT, Nune SK (2016) Adsorption, separation, and catalytic properties of densified metal–organic frameworks. Coord Chem Rev 311:38–52Google Scholar
  14. 14.
    Li W, Henke S, Cheetham AK (2014) Research update: mechanical properties of metal-organic frameworks—influence of structure and chemical bonding. APL Mater 2(12):123902Google Scholar
  15. 15.
    Yang K, Zhou G, Xu Q (2016) The elasticity of MOFs under mechanical pressure. RSC Adv 6(44):37506–37514Google Scholar
  16. 16.
    Tan JC, Bennett TD, Cheetham AK (2010) Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 107(22):9938–9943PubMedGoogle Scholar
  17. 17.
    Coudert F-X (2015) Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem Mater 27(6):1905–1916Google Scholar
  18. 18.
    Mason JA, Veenstra M, Long JR (2014) Evaluating metal–organic frameworks for natural gas storage. Chem Sci 5(1):32–51Google Scholar
  19. 19.
    Coudert F-X, Evans JD (2019) Nanoscale metamaterials: meta-MOFs and framework materials with anomalous behavior. Coord Chem Rev 388:48–62Google Scholar
  20. 20.
    Moosavi SM, Boyd PG, Sarkisov L, Smit B (2018) Improving the mechanical stability of metal-organic frameworks using chemical caryatids. ACS Cent Sci 4(7):832–839PubMedPubMedCentralGoogle Scholar
  21. 21.
    Feng R, Jia Y-Y, Li Z-Y, Chang Z, Bu X-H (2018) Enhancing the stability and porosity of penetrated metal–organic frameworks through the insertion of coordination sites. Chem Sci 9(4):950–955PubMedGoogle Scholar
  22. 22.
    Li N, Xu J, Feng R, Hu T-L, Bu X-H (2016) Governing metal–organic frameworks towards high stability. Chem Commun 52(55):8501–8513Google Scholar
  23. 23.
    Tan JC, Bennett TD, Cheetham AK (2010) Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 107(22):9938PubMedGoogle Scholar
  24. 24.
    Yot PG, Yang K, Guillerm V, Ragon F, Dmitriev V, Parisiades P, Elkaïm E, Devic T, Horcajada P, Serre C, Stock N, Mowat JPS, Wright PA, Férey G, Maurin G (2016) Impact of the metal centre and functionalization on the mechanical behaviour of MIL-53 metal–organic frameworks. Eur J Inorg Chem 27:4424–4429Google Scholar
  25. 25.
    Sun Y, Hu Z, Zhao D, Zeng K (2017) Mechanical properties of microcrystalline metal–organic frameworks (MOFs) measured by bimodal amplitude modulated-frequency modulated atomic force microscopy. ACS Appl Mater Interfaces 9(37):32202–32210PubMedGoogle Scholar
  26. 26.
    Tan JC, Cheetham AK (2011) Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem Soc Rev 40(2):1059–1080PubMedGoogle Scholar
  27. 27.
    Burtch NC, Heinen J, Bennett TD, Dubbeldam D, Allendorf MD (2018) Mechanical properties in metal–organic frameworks: emerging opportunities and challenges for device functionality and technological applications. Adv Mater 30(37):1704124Google Scholar
  28. 28.
    Gao Q, Xu J, Cao D, Chang Z, Bu X-H (2016) A rigid nested metal–organic framework featuring a thermoresponsive gating effect dominated by counterions. Angew Chem Int Ed 55(48):15027–15030Google Scholar
  29. 29.
    Chapman KW, Halder GJ, Chupas PJ (2008) Guest-dependent high pressure phenomena in a nanoporous Metal–organic framework material. J Am Chem Soc 130(32):10524–10526PubMedGoogle Scholar
  30. 30.
    Graham AJ, Allan DR, Muszkiewicz A, Morrison CA, Moggach SA (2011) The effect of high pressure on MOF-5: guest-induced modification of pore size and content at high pressure. Angew Chem Int Ed 50(47):11138–11141Google Scholar
  31. 31.
    Chapman KW, Halder GJ, Chupas PJ (2009) Pressure-induced amorphization and porosity modification in a metal–organic framework. J Am Chem Soc 131(48):17546–17547PubMedGoogle Scholar
  32. 32.
    Graham AJ, Banu A-M, Düren T, Greenaway A, McKellar SC, Mowat JPS, Ward K, Wright PA, Moggach SA (2014) Stabilization of scandium terephthalate MOFs against reversible amorphization and structural phase transition by guest uptake at extreme pressure. J Am Chem Soc 136(24):8606–8613PubMedGoogle Scholar
  33. 33.
    Ma Q, Yang Q, Ghoufi A, Yang K, Lei M, Férey G, Zhong C, Maurin G (2014) Guest-modulation of the mechanical properties of flexible porous metal–organic frameworks. J Mater Chem A 2(25):9691–9698Google Scholar
  34. 34.
    Hu YH, Zhang L (2010) Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. Phys Rev B 81(17):174103Google Scholar
  35. 35.
    Yot PG, Yang K, Ragon F, Dmitriev V, Devic T, Horcajada P, Serre C, Maurin G (2016) Exploration of the mechanical behavior of metal organic frameworks UiO-66(Zr) and MIL-125(Ti) and their NH2 functionalized versions. Dalton Trans 45(10):4283–4288PubMedGoogle Scholar
  36. 36.
    Ortiz AU, Boutin A, Fuchs AH, Coudert F-X (2013) Investigating the pressure-induced amorphization of zeolitic imidazolate framework ZIF-8: mechanical instability due to shear mode softening. J Phys Chem Lett 4(11):1861–1865PubMedGoogle Scholar
  37. 37.
    Yot PG, Ma Q, Haines J, Yang Q, Ghoufi A, Devic T, Serre C, Dmitriev V, Férey G, Zhong C, Maurin G (2012) Large breathing of the MOF MIL-47(VIV) under mechanical pressure: a joint experimental–modelling exploration. Chem Sci 3(4):1100–1104Google Scholar
  38. 38.
    Beurroies I, Boulhout M, Llewellyn PL, Kuchta B, Férey G, Serre C, Denoyel R (2010) Using pressure to provoke the structural transition of metal–organic frameworks. Angew Chem Int Ed 49(41):7526–7529Google Scholar
  39. 39.
    Ramaswamy P, Wieme J, Alvarez E, Vanduyfhuys L, Itié J-P, Fabry P, Van Speybroeck V, Serre C, Yot PG, Maurin G (2017) Mechanical properties of a gallium fumarate metal–organic framework: a joint experimental-modelling exploration. J Mater Chem A 5(22):11047–11054Google Scholar
  40. 40.
    Yot PG, Vanduyfhuys L, Alvarez E, Rodriguez J, Itié J-P, Fabry P, Guillou N, Devic T, Beurroies I, Llewellyn PL, Van Speybroeck V, Serre C, Maurin G (2016) Mechanical energy storage performance of an aluminum fumarate metal–organic framework. Chem Sci 7(1):446–450PubMedGoogle Scholar
  41. 41.
    Moggach SA, Bennett TD, Cheetham AK (2009) The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angew Chem Int Ed 48(38):7087–7089Google Scholar
  42. 42.
    Collings IE, Cairns AB, Thompson AL, Parker JE, Tang CC, Tucker MG, Catafesta J, Levelut C, Haines J, Dmitriev V, Pattison P, Goodwin AL (2013) Homologous critical behavior in the molecular frameworks Zn(CN)2 and Cd(imidazolate)2. J Am Chem Soc 135(20):7610–7620PubMedGoogle Scholar
  43. 43.
    Yao Z-Q, Xu J, Zou B, Hu Z, Wang K, Yuan Y-J, Chen Y-P, Feng R, Xiong J-B, Hao J, Bu X-H (2019) A dual-stimuli-responsive coordination network featuring reversible wide-range luminescence-tuning behavior. Angew Chem Int Ed 58:5614Google Scholar
  44. 44.
    Cairns AB, Goodwin AL (2015) Negative linear compressibility. Phys Chem Chem Phys 17(32):20449–20465PubMedGoogle Scholar
  45. 45.
    Li W, Probert MR, Kosa M, Bennett TD, Thirumurugan A, Burwood RP, Parinello M, Howard JAK, Cheetham AK (2012) Negative linear compressibility of a metal–organic framework. J Am Chem Soc 134(29):11940–11943PubMedGoogle Scholar
  46. 46.
    Zhou M, Wang K, Men Z, Sun C, Li Z, Liu B, Zou G, Zou B (2014) Pressure-induced isostructural phase transition of a metal–organic framework Co2(4,4′-bpy)3(NO3)4·xH2O. CrystEngComm 16(20):4084–4087Google Scholar
  47. 47.
    Serra-Crespo P, Dikhtiarenko A, Stavitski E, Juan-Alcañiz J, Kapteijn F, Coudert F-X, Gascon J (2015) Experimental evidence of negative linear compressibility in the MIL-53 metal–organic framework family. CrystEngComm 17(2):276–280PubMedPubMedCentralGoogle Scholar
  48. 48.
    Lethbridge ZAD, Walton RI, Marmier ASH, Smith CW, Evans KE (2010) Elastic anisotropy and extreme Poisson’s ratios in single crystals. Acta Mater 58(19):6444–6451Google Scholar
  49. 49.
    Cai W, Katrusiak A (2014) Giant negative linear compression positively coupled to massive thermal expansion in a metal–organic framework. Nat Commun 5:4337PubMedGoogle Scholar
  50. 50.
    Miao Y-R, Su Z, Suslick KS (2017) Energy storage during compression of metal–organic frameworks. J Am Chem Soc 139(13):4667–4670PubMedGoogle Scholar
  51. 51.
    Tian T, Zeng Z, Vulpe D, Casco ME, Divitini G, Midgley PA, Silvestre-Albero J, Tan J-C, Moghadam PZ, Fairen-Jimenez D (2017) A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat Mater 17:174PubMedGoogle Scholar
  52. 52.
    Dhainaut J, Avci-Camur C, Troyano J, Legrand A, Canivet J, Imaz I, Maspoch D, Reinsch H, Farrusseng D (2017) Systematic study of the impact of MOF densification into tablets on textural and mechanical properties. CrystEngComm 19(29):4211–4218Google Scholar
  53. 53.
    Lee U-H, Valekar AH, Hwang YK, Chang J-S (2016) Granulation and shaping of metal–organic frameworks. In: Kaskel S (ed) The chemistry of metal–organic frameworks, 1st edn. Wiley, Weinheim, pp 551–572Google Scholar
  54. 54.
    Zhang Y, Gao Q, Lin Z, Zhang T, Xu J, Tan Y, Tian W, Jiang L (2014) Constructing free standing metal organic framework MIL-53 membrane based on anodized aluminum oxide precursor. Sci Rep 4:4947PubMedPubMedCentralGoogle Scholar
  55. 55.
    Valekar AH, Cho K-H, Lee UH, Lee JS, Yoon JW, Hwang YK, Lee SG, Cho SJ, Chang J-S (2017) Shaping of porous metal–organic framework granules using mesoporous ρ-alumina as a binder. RSC Adv 7(88):55767–55777Google Scholar
  56. 56.
    Kim P-J, You Y-W, Park H, Chang J-S, Bae Y-S, Lee C-H, Suh J-K (2015) Separation of SF6 from SF6/N2 mixture using metal–organic framework MIL-100(Fe) granule. Chem Eng J 262:683–690Google Scholar
  57. 57.
    Honeywell International Inc (2018) Adsorbents. https://www.uop.com/products/adsorbents/. Accessed 12 Dec 2018
  58. 58.
    BASF (2017) Adsorbent Technologies. https://catalysts.basf.com/products-and-industries/adsorbents/adsorbent-technologies. Accessed 12 Dec 2018
  59. 59.
    Eurecat (2018) 4A and 13X Molecular Sieves. https://www.eurecat.com/pdf/4A-and-13X-molecular-sieves.pdf. Accessed 11 Dec 2018
  60. 60.
    Shanghai PingYiao Trading Co. Ltd. (2018) BASF 3A Molecular Sieve. http://www.pingyiao.com/en/basf/basf3/BASF-3A.pdf. Accessed 12 Dec 2018
  61. 61.
    Shanghai PingYiao Trading Co. Ltd. (2018) BASF 4A Molecular Sieve. http://www.pingyiao.com/en/basf/basf3/BASF-4A.pdf. Accessed 12 Dec 2018
  62. 62.
    Shanghai PingYiao Trading Co. Ltd. (2018) BASF 5A Molecular Sieve. http://www.pingyiao.com/en/basf/basf3/BASF-5A.pdf. Accessed 12 Dec 2018
  63. 63.
    Shanghai PingYiao Trading Co. Ltd. (2018) BASF 13X Molecular Sieve. http://www.pingyiao.com/en/basf/basf3/BASF-13X.pdf. Accessed 12 Dec 2018
  64. 64.
    UOP LLC (2011) UOP GB-220 Adsorbent. https://www.uop.com/?document=uop-gb-220-adsorbent-data-sheet&download=1. Accessed 12 Dec 2018
  65. 65.
    Mattesini M, Soler JM, Ynduráin F (2006) Ab initio study of metal-organic framework-5 Zn4O(1,4- benzenedicarboxylate)3: an assessment of mechanical and spectroscopic properties. Phys Rev B 73(9):1–8Google Scholar
  66. 66.
    Ortiz AU, Boutin A, Fuchs AH, Coudert FX (2012) Anisotropic elastic properties of flexible metal–organic frameworks: how soft are soft porous crystals? Phys Rev Lett 109(19):1–5Google Scholar
  67. 67.
    Purewal JJ, Liu D, Yang J, Sudik A, Siegel DJ, Maurer S, Müller U (2012) Increased volumetric hydrogen uptake of MOF-5 by powder densification. Int J Hydrogen Energy 37(3):2723–2727Google Scholar
  68. 68.
    Bueken B, Van Velthoven N, Willhammar T, Stassin T, Stassen I, Keen DA, Baron GV, Denayer JFM, Ameloot R, Bals S, De Vos D, Bennett TD (2017) Gel-based morphological design of zirconium metal–organic frameworks. Chem Sci 8(5):3939–3948PubMedPubMedCentralGoogle Scholar
  69. 69.
    Hong WY, Perera SP, Burrows AD (2015) Manufacturing of metal–organic framework monoliths and their application in CO2 adsorption. Microporous Mesoporous Mater 214:149–155Google Scholar
  70. 70.
    Masika E, Mokaya R (2014) Exceptional gravimetric and volumetric hydrogen storage for densified zeolite templated carbons with high mechanical stability. Energy Environ Sci 7(1):427–434Google Scholar
  71. 71.
    Hou PX, Orikasa H, Itoi H, Nishihara H, Kyotani T (2007) Densification of ordered microporous carbons and controlling their micropore size by hot-pressing. Carbon 45(10):2011–2016Google Scholar
  72. 72.
    Thakkar H, Eastman S, Al-Naddaf Q, Rownaghi AA, Rezaei F (2017) 3D-printed metal–organic framework monoliths for gas adsorption processes. ACS Appl Mater Interfaces 9(41):35908–35916PubMedGoogle Scholar
  73. 73.
    Hu Q, Shao J, Yang H, Yao D, Wang X, Chen H (2015) Effects of binders on the properties of bio-char pellets. Appl Energy 157:508–516Google Scholar
  74. 74.
    Kreider MC, Sefa M, Fedchak JA, Scherschligt J, Bible M, Natarajan B, Klimov NN, Miller AE, Ahmed Z, Hartings MR (2018) Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym Adv Technol 29(2):867–873Google Scholar
  75. 75.
    Shang C, Sinka IC, Jayaraman B, Pan J (2013) Break force and tensile strength relationships for curved faced tablets subject to diametrical compression. Int J Pharm 442(1–2):57–64PubMedGoogle Scholar
  76. 76.
    Küsgens P, Zgaverdea A, Fritz H-G, Siegle S, Kaskel S (2010) Metal–organic frameworks in monolithic structures. J Am Chem Soc 93(9):2476–2479Google Scholar
  77. 77.
    ASTM International (2017) ASTM D4179-11, Standard Test Method for Single Pellet Crush Strength of Formed Catalyst Shapes. https://www.astm.org/. Accessed 12 December 2018
  78. 78.
    Mahdizadeh SJ, Goharshadi EK (2013) Natural gas storage on silicon, carbon, and silicon carbide nanotubes: a combined quantum mechanics and grand canonical Monte Carlo simulation study. J Nanoparticle Res 15(1):1393Google Scholar
  79. 79.
    Tian T, Velazquez-Garcia J, Bennett TD, Fairen-Jimenez D (2015) Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity. J Mater Chem A 3(6):2999–3005Google Scholar
  80. 80.
    Schuh CA (2006) Nanoindentation studies of materials. Mater Today 9(5):32–40Google Scholar
  81. 81.
    Sakharova NA, Fernandes JV, Antunes JM, Oliveira MC (2009) Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int J Solids Struct 46(5):1095–1104Google Scholar
  82. 82.
    Antunes JM, Menezes LF, Fernandes JV (2006) Three-dimensional numerical simulation of Vickers indentation tests. Int J Solids Struct 43(3–4):784–806Google Scholar
  83. 83.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20Google Scholar
  84. 84.
    Ren J, North B (2014) Shaping porous materials for hydrogen storage applications: a review. J Technol Innov Renew Energy 3(1):12–20Google Scholar
  85. 85.
    Hindocha S, Poulston S (2017) Study of the scale-up, formulation, ageing and ammonia adsorption capacity of MIL-100(Fe), Cu-BTC and CPO-27(Ni) for use in respiratory protection filters. Faraday Discuss 201:113–125PubMedGoogle Scholar
  86. 86.
    Khabzina Y, Dhainaut J, Ahlhelm M, Richter H-J, Reinsch H, Stock N, Farrusseng D (2018) Synthesis and shaping scale-up study of functionalized UiO-66 MOF for ammonia air purification filters. Ind Eng Chem Res 57(24):8200–8208Google Scholar
  87. 87.
    ASTM International (2015) ASTM D4058-96, Standard Test Method for Attrition and Abrasion of Catalysts and Catalyst Carriers. https://www.astm.org/. Accessed 12 December 2018
  88. 88.
    Akhtar F, Andersson L, Ogunwumi S, Hedin N, Bergström L (2014) Structuring adsorbents and catalysts by processing of porous powders. J Eur Chem Soc 34(7):1643–1666Google Scholar
  89. 89.
    Allendorf MD, Houk RJT, Andruszkiewicz L, Talin AA, Pikarsky J, Choudhury A, Gall KA, Hesketh PJ (2008) Stress-induced chemical detection using flexible metal–organic frameworks. J Am Chem Soc 130(44):14404–14405PubMedGoogle Scholar
  90. 90.
    Huang A, Bux H, Steinbach F, Caro J (2010) Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angew Chem Int Ed 49(29):4958–4961Google Scholar
  91. 91.
    Zacher D, Shekhah O, Wöll C, Fischer RA (2009) Thin films of metal–organic frameworks. Chem Soc Rev 38(5):1418–1429PubMedGoogle Scholar
  92. 92.
    Lim JW, Choi Y, Yoon HS, Park YK, Yim JH, Jeon JK (2010) Extrusion of honeycomb monoliths employed with activated carbon-LDPE hybrid materials. J Ind Eng Chem 16(1):51–56Google Scholar
  93. 93.
    Wickenheisser M, Herbst A, Tannert R, Milow B, Janiak C (2015) Hierarchical MOF-xerogel monolith composites from embedding MIL-100(Fe, Cr) and MIL-101(Cr) in resorcinol-formaldehyde xerogels for water adsorption applications. Microporous Mesoporous Mater 215:143–153Google Scholar
  94. 94.
    Alemán JV, Chadwick AV, He J, Hess M, Horie K, Jones RG, Kratochvíl P, Meisel I, Mita I, Moad G, Penczek S, Stepto RFT (2007) Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem 79(10):1801–1829Google Scholar
  95. 95.
    Breuer E, Chorghade MS, Fischer J, Golomb G (2009) Glossary of terms related to pharmaceutics (IUPAC recommendations 2009). Pure Appl Chem 81(5):971–999Google Scholar
  96. 96.
    Li J, Tao L, Dali M, Buckley D, Gao J, Hubert M (2011) The effect of the physical states of binders on high-shear wet granulation and granule properties: a mechanistic approach toward understanding high-shear wet granulation process. Part II. Granulation and granule properties. J Pharm Sci 100(1):294–310PubMedGoogle Scholar
  97. 97.
    Tagliabue M, Rizzo C, Millini R, Dietzel PDC, Blom R, Zanardi S (2011) Methane storage on CPO-27-Ni pellets. J Porous Mater 18(3):289–296Google Scholar
  98. 98.
    Aguado S, Canivet J, Farrusseng D (2010) Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chem Commun 46(42):7999–8001Google Scholar
  99. 99.
    O’Neill LD, Zhang H, Bradshaw D (2010) Macro-/microporous MOF composite beads. J Mater Chem 20(27):5720Google Scholar
  100. 100.
    Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Quinn DF (2002) Activated carbon monoliths for methane storage: influence of binder. Carbon 40(15):2817–2825Google Scholar
  101. 101.
    Ahmed A, Forster M, Clowes R, Myers P, Zhang H (2014) Hierarchical porous metal–organic framework monoliths. Chem Commun 50(92):14314–14316Google Scholar
  102. 102.
    Ramos-Fernandez EV, Garcia-Domingos M, Juan-Alcañiz J, Gascon J, Kapteijn F (2011) MOFs meet monoliths: hierarchical structuring metal organic framework catalysts. Appl Catal A 391(1–2):261–267Google Scholar
  103. 103.
    Ryder MR, Civalleri B, Cinque G, Tan J-C (2016) Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework. CrystEngComm 18(23):4303–4312Google Scholar
  104. 104.
    Rogge SMJ, Waroquier M, Van Speybroeck V (2018) Reliably modeling the mechanical stability of rigid and flexible metal–organic frameworks. Accounts Chem Res 51(1):138–148Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations