Manganese(III) Porphyrin-Based Magnetic Materials

  • Daopeng Zhang
  • Wenlong Lan
  • Zhen Zhou
  • Lu Yang
  • Qingyun Liu
  • Yongzhong BianEmail author
  • Jianzhuang JiangEmail author


Manganese(III) porphyrin complexes with various metal-containing/non-metal bridges reported during the past two decades, including their structural characteristics and magnetic properties, are summarized. As the porphyrin ligands usually adopt a planar chelate form, it is possible that the porphyrin-based complexes, being a coordination-acceptor building block, have two coordination labile sites in trans positions. In particular, the coordination labile sites in an octahedral field face the direction of the Jahn–Teller elongated axis occupying the dz2 orbital. As a result of this characteristic orbital arrangement, the activity and magnetic-electronic properties of the manganese complexes can be tuned by modulating the porphyrin ligand, which is equatorially located around the manganese ion and coupled with the dx2−y2 orbital. The high-spin Mn(III) porphyrin complexes (S = 2) display strong magnetic uniaxial anisotropy with the Jahn–Teller axis as the magnetic easy axis. So far, various manganese(III) porphyrin magnetism systems, including multinuclear clusters, one-dimensional chains, and two- or three-dimensional networks, have been designed and structurally and magnetically characterized. This review shows that the manganese(III) porphyrin complexes have potential as versatile sources for the design of unique magnetic materials as well as other molecular functional materials with various structures.


Manganese porphyrin Crystal structure Molecular magnetism 









2,5-Dimethyl-N,N′-dicyanoquinone diimine


2,5-Dimethoxy-N,N′-dicyanoquinone diimine
























meso-Tetrakis(4-bromophenyl) porphinate






μ4-σ-Dimerized 7,7,8,8-tetracyano-p-quinodimethane dianion























This work was supported by the Natural Science Foundation of China (Nos. 21671121, 21773006), National Key Basic Research Program of China (Grant Nos. 2013CB933402 and 2012CB224801), Program for New Century Excellent Talents in University, Fundamental Research Funds for the Central Universities and Beijing Natural Science Foundation.


  1. 1.
    Lee YA, Kim JO, Cho TS, Song R, Kim SK (2003) Binding of meso-tetrakis(N-methylpyridium-4-yl)porphyrin to triplex oligonucleotides: evidence for the porphyrin stacking in the major groove. J Am Chem Soc 125:8106–8107PubMedGoogle Scholar
  2. 2.
    Kojima T, Harada R, Nakanishi T, Kaneko K, Fukuzumi S (2007) Porphyrin nanotubes based on self-assembly of Mo(V)-dodecaphenylporphyrin complexes and inclusion of Mo–Oxo clusters: synthesis and characterization by X-ray crystallography and transmission electron microscopy. Chem Mater 19:51–58Google Scholar
  3. 3.
    Imahori H, Arimura M, Hanada T, Nishimura Y, Yamazaki I, Sakata Y, Fukuzumi S (2001) Photoactive three-dimensional monolayers: porphyrin-alkanethiolate-stabilized gold clusters. J Am Chem Soc 123:335–336PubMedGoogle Scholar
  4. 4.
    Bearinger JP, Stone G, Christian AT, Dugan L, Hiddessen AL, Wu K, Jen J, Wu L, Hamilton J, Stockton C, Hubbell JA (2008) Porphyrin-based photocatalytic lithography. Langmuir 24:5179–5184PubMedPubMedCentralGoogle Scholar
  5. 5.
    Mojzeš P, Kruglik SG, Baumruk V, Turpin PY (2003) Interactions of electronically excited copper(II)-porphyrin with DNA: resonance raman evidence for the exciplex formation with adenine and cytosine residues. J Phys Chem B 107:7532–7535Google Scholar
  6. 6.
    Bian YZ, Jiang JZ, Tao Y, Choi MTM, Li RJ, Anthony Ng CH, Zhu PH, Pan N, Sun X, Arnold DP, Zhou ZY, Li HW, Mak TCW, Ng DKP (2003) Tuning the valence of the cerium center in (Na)phthalocyaninate and porphyrinate cerium double-deckers by changing the nature of the tetrapyrrole ligands. J Am Chem Soc 125:12257–12267PubMedGoogle Scholar
  7. 7.
    Kazazić S, Klasinc L, McGlynn SP, Srzić D, Vicente MGH (2004) Gas-phase metallation reactions of porphyrins with metal monocations. J Phys Chem A 108:10997–11000Google Scholar
  8. 8.
    Okamoto K, Fukuzumi S (2003) Self-promoted electron transfer from cobalt(II) porphyrin to p-fluoranil to produce a dimer radical anion-cobalt(III) porphyrin complex. J Am Chem Soc 125:12416–12417PubMedGoogle Scholar
  9. 9.
    Fukuzumi S, Ohkubo KEW, Ou ZP, Shao JG, Kadish KM, Hutchison JA, Ghiggino KP, Sintic PJ, Crossley MJ (2003) Metal-centered photoinduced electron transfer reduction of a gold(III) porphyrin cation linked with a zinc porphyrin to produce a long-lived charge-separated state in nonpolar solvents. J Am Chem Soc 125:14984–14985PubMedGoogle Scholar
  10. 10.
    Hecht S, Ihre H, Fréchet JMJ (1999) Porphyrin core star polymers: synthesis, modification, and implication for site isolation. J Am Chem Soc 121:9239–9240Google Scholar
  11. 11.
    Suijkerbuijk BMJM, Klein Gebbink G, Robertus JM (2008) Merging porphyrins with organometallics: synthesis and applications. Angew Chem Int Ed 47:7396–7421Google Scholar
  12. 12.
    Ikeda C, Satake A, Kobuke Y (2003) Proofs of macrocyclization of gable porphyrins as mimics of photosynthetic light-harvesting complexes. Org Lett 5:4935–4938PubMedGoogle Scholar
  13. 13.
    Li BS, Li J, Fu YQ, Bo ZS (2004) Porphyrins with four monodisperse oligofluorene arms as efficient red light-emitting materials. J Am Chem Soc 126:3430–3431PubMedGoogle Scholar
  14. 14.
    Zhou XL, Kang SW, Kumar S, Kulkarni RR, Cheng SZD, Li Q (2008) Self-assembly of porphyrin and fullerene supramolecular complex into highly ordered nanostructure by simple thermal annealing. Chem Mater 20:3551–3553Google Scholar
  15. 15.
    Jiang JZ, Dennis KPN (2009) A decade journey in the chemistry of sandwich-type tetrapyrrolato-rare earth complexes. Acc Chem Res 42:79–88PubMedGoogle Scholar
  16. 16.
    Wong WY, Harvey PD (2010) Recent progress on the photonic properties of conjugated organometallic polymers built upon the trans-bis(paraethynylbenzene)bis(phosphine)platinum(II) chromophore and related derivatives. Macromol Rapid Commun 31:671–713PubMedGoogle Scholar
  17. 17.
    Xu LL, Ho CL, Liu L, Wong WY (2018) Molecular/polymeric metallaynes and related molecules: solar cell materials and devices. Coord Chem Rev 373:233–257Google Scholar
  18. 18.
    Zhu XJ, Wong WK, Wong WY, Yang XP (2011) Design and synthesis of near-infrared emissive lanthanide complexes based on macrocyclic ligands. Eur J Inorg Chem 2011:4651–4674Google Scholar
  19. 19.
    Cornia A, Mannini M, Sainctavit P, Sessoli R (2011) Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces. Chem Soc Rev 40:3076–3091PubMedGoogle Scholar
  20. 20.
    Dechambenoit P, Long JR (2011) Microporous magnets. Chem Soc Rev 40:3249–3265PubMedGoogle Scholar
  21. 21.
    Sanvito S (2011) Molecular spintronics. Chem Soc Rev 40:3336–3355PubMedGoogle Scholar
  22. 22.
    Sorace L, Benelli C, Gatteschi D (2011) Lanthanides in molecular magnetism: old tools in a new field. Chem Soc Rev 40:3092–3104PubMedGoogle Scholar
  23. 23.
    Ferrando-Soria J, Serra-Crespo P, Lange MD, Gascon J, Kapteijn F, Julve M, Cano J, Lloret F, Pasán J, Ruiz-Pérez C, Journaux Y, Pardo EJ (2012) Selective gas and vapor sorption and magnetic sensing by an isoreticular mixed-metal–organic framework. J Am Chem Soc 134:15301–15304PubMedGoogle Scholar
  24. 24.
    Roques N, Mugnaini V, Veciana J (2010) Magnetic and porous molecule-based materials. Top Curr Chem 293:207–258PubMedGoogle Scholar
  25. 25.
    Nowicka B, Korzeniak T, Stefańczyk O, Pinkowicz D, Chorąży S, Podgajny R, Sieklucka B (2012) The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord Chem Rev 256:1946–1971Google Scholar
  26. 26.
    Wang XY, Avendaño C, Dunbar KR (2011) Molecular magnetic materials based on 4d and 5d transition metals. Chem Soc Rev 40:3213–3238PubMedGoogle Scholar
  27. 27.
    Mitra S (1977) Chemical applications of magnetic anisotropy studies on transition metal complexes. Prog Inorg Chem 22:309–312Google Scholar
  28. 28.
    Figgis BN (1960) Magnetic properties of transition metal ions in asymmetric ligand fields. Part 1. Cubic field A and E terms. Trans Faraday Soc 56:1553–1558Google Scholar
  29. 29.
    Miyasaka H, Saitoh A, Abe S (2007) Magnetic assemblies based on Mn(III) salen analogues. Coord Chem Rev 251:2622–2664Google Scholar
  30. 30.
    Gerritsen HJ, Sabisky ES (1963) Paramagnetic resonance of trivalent manganese in rutile (TiO2). Phys Rev 132:1507–1512Google Scholar
  31. 31.
    Cheng B, Cukiernik F, Fries PH, Marchon JC, Scheidt WR (1995) A novel dimanganese(III) complex with a single hydroxo bridge. syntheses, structures, and magnetic susceptibilities of (μ-hydroxo)bis((octaethylporphinate)manganese(III)) perchlorate and a monomeric precursor, aquo(octaethylporphinate)manganese(III) perchlorate. Inorg Chem 34:4627–4639Google Scholar
  32. 32.
    Cheng B, Fries PH, Marchon JC, Scheidt WR (1996) A nearly linear single hydroxo bridge. Synthesis, structure, and magnetic susceptibility of (μ-hydroxo)bis((tetraphenylporphinate)manganese(III)) perchlorate. Inorg Chem 35:1024–1032PubMedGoogle Scholar
  33. 33.
    Suslick KS, Watson RA, Wilson SR (1991) Structure and photochemistry of manganese porphyrin sulfate complexes. Inorg Chem 30:2311–2317Google Scholar
  34. 34.
    Donzello MP, Bartolino L, Ercolani C, Rizzoli C (2006) A rare μ-hydroxo-bridged species. Synthesis, structure, and properties of μ-hydroxo(tetraphenylporphyrinatomanganese(III))(phthalocyaninate(azido)chromium(III)), [(TPP)Mn-O(H)-CrPc(N3)]. Inorg Chem 45:6988–6995PubMedGoogle Scholar
  35. 35.
    Donzello MP, Ercolani C, Russo U, Chiesi-Villa A, Rizzoli C (2001) Metal- and ligand-centered monoelectronic oxidation of μ-nitrido[((tetraphenylporphyrinate)manganese)(phthalocyaninatoiron)], [(TPP)Mn-N-FePc]. X-ray crystal structure of the Fe(IV)-containing species [(THF)(TPP)Mn-N-FePc(H2O)](I5)·2THF. Inorg Chem 40:2963–2967PubMedGoogle Scholar
  36. 36.
    Zhang DP, Wang HL, Chen Y, Ni ZH, Tian LJ, Jiang JZ (2009) Synthesis, crystal structure and magnetic property of an unusual formate-bridged heterometallic binuclear CrIIIMnIII porphyrin complex. Inorg Chem Commun 12:698–700Google Scholar
  37. 37.
    Zhang DP, Wang HL, Tian LJ, Kou HZ, Jiang JZ, Ni ZH (2009) Synthesis, crystal structures, and magnetic properties of cyanide-bridged Fe(III)–Mn(III) complexes based on manganese(III)-porphyrin and pyridinecarboxamide dicyanideiron(III) building blocks. Crystal Growth Des 9:3989–3996Google Scholar
  38. 38.
    Zhang DP, Zhao ZD, Wang P, Ni ZH (2013) Substituent group tuned tri- and binuclear porphyrin-based cyanide-bridged bimetallic complexes: synthesis, crystal structures and magnetic properties. CrystEngComm 15:2504–2511Google Scholar
  39. 39.
    Li GL, Nie J, Chen H, Ni ZH, Zhao Y, Zhang LF (2012) Syntheses, crystal structures and magnetic properties of two FeIII–MnIII complexes based on manganese(III)-porphyrin and tetracyanideferrite(III) building blocks. Inorg Chem Commun 19:66–69Google Scholar
  40. 40.
    Huh S, Youm KT, Park YJ, Lough AJ, Ohba M, Jun MJ (2005) Trinuclear MnIII-NC-FeIII-CN-MnIII ferromagnetic system. Bull Korean Chem Soc 26:1031–1032Google Scholar
  41. 41.
    Kim Y, Choi SK, Park SM, Nam W, Kim SJ (2002) Synthesis and reactivity of rhenium cluster-supported manganese porphyrin complexes. Inorg Chem Commun 5:612–615Google Scholar
  42. 42.
    Visinescu D, Toma LM, Cano J, Fabelo O, Ruiz-Pérez C, Labrador A, Lloret F, Julve M (2010) Magnetic coupling in discrete cyano-bridged MnIII-FeIII motifs: synthesis, crystal structure, magnetic properties and theoretical study. Dalton Trans 39:5028–5038PubMedGoogle Scholar
  43. 43.
    Ni WW, Ni ZH, Cui AL, Liang X, Kou HZ (2007) Cyanide-bridged Mn(III)–Fe(III) bimetallic complexes based on the pentacyano(1-methylimidazole)ferrate(III) building block: structure and magnetic characterizations. Inorg Chem 46:22–33PubMedGoogle Scholar
  44. 44.
    Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini MG, Novak MA (2001) Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires. Angew Chem Int Ed 40:1760–1763Google Scholar
  45. 45.
    Clérac R, Miyasaka H, Yamashita M, Coulon C (2002) Evidence for single-chain magnet behavior in a MnIII–NiII chain designed with high spin magnetic units: a route to high temperature metastable magnets. J Am Chem Soc 124:12837–12844PubMedGoogle Scholar
  46. 46.
    Glauber RJ (1963) Time-dependent statistics of the Ising model. J Math Phys 4:294–307Google Scholar
  47. 47.
    Miller JS, Calabrese JC, McLean RS, Epstein AJ (1992) Meso-(tetraphenylporphinate)manganese(III)-tetracyanoethenide, [MnIIITPP]•⊕[TCNE] . A new structure-type linear-chain magnet with a Tc of 18K. Adv Mater 4:498–501Google Scholar
  48. 48.
    Miller JS, Vazquez C, Calabrese JC, McLean RS, Epstein AJ (1994) Cooperative magnetic behavior of α- and β-manganese(III) phthalocyanine tetracyanoethenide (1:1), [MnIIIPc] •⊕[TCNE] •⊖. Adv Mater 6:217–221Google Scholar
  49. 49.
    Miller JS, Vazquez C, Jones NL, Mclean RS, Epstein AJ (1995) Magnetic behaviour of octaethylporphyrinatomanganese(III) tetracyanoethenide, [MnOEP][TCNE], and hexacyanobutadienide, [MnOEP][C4(CN)6]: the importance of a uniform chain for stabilizing strong effective ferromagnetic coupling. J Mater Chem 5:707–711Google Scholar
  50. 50.
    Böhm A, Vazquez C, McLean RS, Calabrese JC, Kalm SE, Manson JL, Epstein AJ, Miller JS (1996) Weak effect on Tc with increased interchain distances. Structure and magnetic properties of (meso-tetrakis(3,5-di-tert-butyl-4-hydroxyphenyl)porphinate)manganese(III) tetracyanoethenide, [MnIIITP′P]+[TCNE]•−. Inorg Chem 35:3083–3088PubMedGoogle Scholar
  51. 51.
    Sugiura KI, Mikami S, Tanaka T, Sawada M, Manson JL, Miller JS, Sakata Y (1997) Magnetic ordering of 5,10,15,20-tetrakis[4′-(trifluoromethyl)phenyl]-porphyrinatomanganese(III) tetracyanoethenide with a 6.0 K Tc. Chem Lett 26:1071–1072Google Scholar
  52. 52.
    Sugiura KI, Arif AM, Rittenberg DK, Schweizer J, Öhrstrom L, Epstein AJ, Miller JS (1997) The importance of magnetic coupling through atoms with large spin densities-structure and magnetic properties of meso-tetrakis-(4′-tert-butylphenyl)porphinatomanganese(III) hexacyanobutadienide, [MnIIITtBuPP]+[C4(CN)6]. Chem Eur J 3:138–142Google Scholar
  53. 53.
    Sugiura KI, Mikami S, Tanaka T, Sawada M, Sakata Y (1998) Cheminform abstract: isolation and molecular structure of 1,1,2,4,5,5-hexacyano-1,4-pentadienyl anion (III). An unusual reaction of tetracyanoethylene with p-xylene mediated by a porphyrinatomanganese(II). Chem Lett 27:103–104Google Scholar
  54. 54.
    Brandon EJ, Rittenberg DK, Arif AM, Miller JS (1998) Ferrimagnetic behavior of multiple phases and solvates of (meso-tetrakis(4-chlorophenyl)porphinate)manganese(III) tetracyanoethenide, [MnTClPP]+[TCNE]•−. Enhancement of magnetic coupling by thermal annealing. Inorg Chem 37:3376–3384Google Scholar
  55. 55.
    Brandon EJ, Arif AM, Burkhart BM, Miller JS (1998) Structure and magnetic properties of antiferromagnetic manganese(III) tetrakis(4-methoxyphenyl)porphyrin tetracyanoethenide, [MnTOMePP][TCNE]·2PhMe, and manganese(III) tetrakis(2-fluorophenyl)porphyrin tetracyanoethenide, [MnTFPP][TCNE]·2PhMe. Inorg Chem 37:2792–2798PubMedGoogle Scholar
  56. 56.
    Yates ML, Arif AM, Manson JL, Kalm BA, Burkhart BM, Miller JS (1998) Structure and magnetic properties of (meso-tetraphenylporphinate)manganese(III) pentacyanopropenide, [MnIIITPP]+[C3(CN)5]. An unusual asymmetric bridge-bonding mode for μ-[C3(CN)5]. Inorg Chem 37:840–841Google Scholar
  57. 57.
    Miller JS, Epstein AJ (1998) Tetracyanoethylene-based organic magnets. Chem Commun (13):1319–1325Google Scholar
  58. 58.
    Sugiura KI, Mikami S, Johnson MT, Miller JS, Iwasaki K, Umishita K, Hino S, Sakata Y (1999) First isolation and characterization of an electron transfer salt of a tetracyanoquinodimethane with porphyrinatomanganese(II) having novel cis-μ-coordination manner: a molecule-based magnet with a 2.3 K Tc. Chem Lett 31:925–926Google Scholar
  59. 59.
    Rittenberg DK, Miller JS (1999) Observation of magnetic ordering as high as 28 K for meso-tetrakis(4-halophenyl)porphinatomanganese(III) tetracyanoethenide, [MnTXPP][TCNE] (X = F, Br, I). Inorg Chem 38:4838–4848PubMedGoogle Scholar
  60. 60.
    Rittenberg DK, Sugiura KI, Sakata Y, Mikami S, Epstein AJ, Miller JS (2000) Large coercivity and high remanent magnetization organic-based magnets. Adv Mater 12:126–130Google Scholar
  61. 61.
    Rittenberg DK, Arif AM, Miller JS (2000) Effect of thermal annealing on the ferrimagnetic behavior and ordering of the [MnTXPP]+[TCNE]˙·solv (X = F, Cl, Br, I; solv = PhMe, CH2Cl2) family of magnets. J Chem Soc Dalton Trans (21):3939–3948Google Scholar
  62. 62.
    Johnson MT, Arif AM, Miller JS (2000) Structure and magnetic properties of tetrakis(3,4,5-trimethoxy-phenyl)porphinatomanganese(III) 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethenide: the first example of an isolated [TCNQF4]. Eur J Inorg Chem 2000:1781–1787Google Scholar
  63. 63.
    Miller JS (2000) Organometallic- and organic-based magnets: new chemistry and new materials for the new millennium. Inorg Chem 39:4392–4408Google Scholar
  64. 64.
    Rittenberg DK, Sugiura KI, Arif AM, Sakata Y, Incarvito CD, Rheingold AL, Miller JS (2000) Products from the reaction of meso-tetrakis(4-halophenyl)porphinate-manganese(II) and hexacyanobutadiene (HCBD): formation of π-[HCBD]22− dimers, μ-[HCBD], σ-[HCBD], and [C4(CN)5O]. Chem Eur J 6:1811–1819PubMedGoogle Scholar
  65. 65.
    Sugiura KI, Mikami S, Johnson MT, Miller JS, Iwasaki K, Umishita K, Hino S, Sakata Y (2000) Structure and magnetic properties of meso-tetrakis(2,4,6-trimethylphenyl)porphyrinatomanganese(III) 7,7,8,8-tetracyano-2,5-dimethyl-p-quinodimethanide with a 2.3 K Tc. The first example of cis coordination of a tetracyano-p-quinodimethanide. J Mater Chem 10:959–964Google Scholar
  66. 66.
    Sugiura KI, Mikami S, Johnson MT, Raebiger JW, Miller JS, Iwasaki K, Okada Y, Hino S, Sakata Y (2001) Ferrimagnetic ordering of one-dimensional N,N′-dicyanoquinone diimine (DCNQI) electron transfer salts with porphyrinatomanganese(II). J Mater Chem 11:2152–2158Google Scholar
  67. 67.
    Arthur JL, Moore CE, Rheingold AL, Miller JS (2011) Stabilization of magnetic ordering observed for the bridging NCN group. Inorg Chem 50:2735–2737PubMedGoogle Scholar
  68. 68.
    Tomkowicz Z, Rams M, Bałanda M, Foro S, Nojiri H, Krupskaya Y, Kataev V, Büchner B, Nayak SK, Yakhmi JV, Haase W (2012) Slow magnetic relaxations in manganese(III) tetra(meta-fluorophenyl)porphyrin-tetracyanoethenide. Comparison with the relative single chain magnet ortho compound. Inorg Chem 51:9983–9994PubMedGoogle Scholar
  69. 69.
    Brandon EJ, Rogers RD, Burkhart BM, Miller JS (1998) The structure and ferrimagnetic behavior of meso-tetraphenyl-porphinatomanganese(III) tetrachloro-1,4-benzoquinonide, [MnIIITPP]+[QCl4]·PhMe: evidence of a quinoidal structure for [QCl4]. Chem Eur J 4:1938–1943Google Scholar
  70. 70.
    Landrum JT, Hatano K, Scheidt WR, Reed CA (1980) Imidazolate complexes of iron and manganese tetraphenylporphyrins. J Am Chem Soc 102:6729–6735Google Scholar
  71. 71.
    Turner P, Gunter MJ, Hambley TW, White AH, Skelton BW (1992) Two unusual fonnate-bridged manganese(III) tetraphenylporphyrin complexes. Inorg Chem 31:2295–2297Google Scholar
  72. 72.
    Kumar RK, Balasubramanian S, Goldberg I (1998) Crystal engineering with tetraarylporphyrins, an exceptionally versatile building block for the design of multidimensional supramolecular structures. Chem Commun (14):1435–1436Google Scholar
  73. 73.
    Diskin-Posner Y, Patra GK, Goldberg I (2001) Supramolecular assembly of metalloporphyrins in crystals by axial coordination through amine ligands. J Chem Soc Dalton Trans (19):2775–2782Google Scholar
  74. 74.
    Bernot K, Luzon J, Sessoli R, Vindigni A, Thion J, Richeter S, Leclercq D, Larionova J, van der Lee A (2008) The canted antiferromagnetic approach to single-chain magnets. J Am Chem Soc 130:1619–1627PubMedGoogle Scholar
  75. 75.
    Tsao TB, Lee GH, Yeh CY, Peng SM (2003) Supramolecular assembly of linear trinickel complexes incorporating metalloporphyrins: a novel one-dimensional polymer and oligomer. Dalton Trans (8):1465–1471Google Scholar
  76. 76.
    Dawe LN, Miglioi J, Turnbow L, Taliaferro ML, Shum WW, Bagnato JD, Zakharov LN, Rheingold AL, Arif AM, Fourmigué M, Miller JS (2005) Structure and magnetic properties of (meso-tetraphenylporphinato)manganese(III) bis(dithiolato)nickelates. Inorg Chem 44:7530–7539PubMedGoogle Scholar
  77. 77.
    Zhang DP, Zhang LF, Chen YT, Wang HL, Ni ZH, Wernsdorfer W, Jiang JZ (2010) Heterobimetallic porphyrin-based single-chain magnet constructed from manganese(III)-porphyrin and trans-dicyanobis(acetylacetonato) ruthenate(III) containing co-crystallized bulk anions and cations. Chem Commun 46:3550–3552Google Scholar
  78. 78.
    Chen X, Wu SQ, Cui AL, Kou HZ (2014) A cyano-bridged single-chain magnet featuring alternate high- and low-spin manganese(III) porphyrins. Chem Commun 50:2120–2122Google Scholar
  79. 79.
    Kumar RK, Goldberg I (1998) Supramolecular assembly of heterogeneous multiporphyrin arrays—structures of [{ZnII(tpp)}2(tpyp)] and the coordination polymer [{[MnIII(tpp)]2(tpyp)(ClO4)2}∞]. Angew Chem Int Ed 37:3027–3030Google Scholar
  80. 80.
    Mikami S, Sugiura KI, Miller JS, Sakata Y (1999) Two-dimensional honeycomb network formed by porphyrinatomanganese(III) and μ4-σ-dimerized 7,7,8,8-tetracyano-p-quinodimethane dianion. Chem Lett 28:413–414Google Scholar
  81. 81.
    Lin KJ (1999) SMTP-1: the first functionalized metalloporphyrin molecular sieves with large channels. Angew Chem Int Ed 38:2730–2732Google Scholar
  82. 82.
    George S, Lipstman S, Muniappan S, Goldberg I (2006) Porphyrin network solids: examples of supramolecular isomerism, noncentrosymmetric architectures and competing solvation. CrystEngComm 8:417–424Google Scholar
  83. 83.
    Barron PM, Son HT, Hu CH, Choe W (2009) Highly tunable heterometallic frameworks constructed from paddle-wheel units and metalloporphyrins. Cryst Growth Des 9:1960–1965Google Scholar
  84. 84.
    Farha OK, Shultz AM, Sarjeant AA, Nguyen ST, Hupp JT (2011) Active-site-accessible, porphyrinic metal-organic framework materials. J Am Chem Soc 133:5652–5655PubMedGoogle Scholar
  85. 85.
    Chandrasekhar S, Sadashiva BK, Suresh KA (1977) Liquid crystals of disc-like molecules. Pramana J Phys 9:471–480Google Scholar
  86. 86.
    Griesar K, Athanassopoulou MA, Bustamante ES, Haase W, Tomkowicz Z, Zaleski AJ, Haase W (1997) A ferrimagnetically coupled liquid crystal. Adv Mater 9:45–48Google Scholar
  87. 87.
    Hill J, Sugino T, Shimizu Y (1999) Synthesis and characterization of some manganese complexes of 5,10,15,20-tetrakis(4-n-dodecylphenyl)porphyrin, molecular crystals and liquid crystals science and technology. Mol Cryst Liq Cryst 332:119–125Google Scholar
  88. 88.
    Haase W, Wrobel S, Falk K (2003) Recent results on some columnar paramagnetic metallomesogens. Pramana J Phys 61:189–198Google Scholar
  89. 89.
    Winter H, Kelemen M, Dormann E, Gompper R, Janner R, Kothrade S, Wagner B (1995) Characterisation of new organic ligand-based magnets: [MNTTP][TCNE] and [MnTTP][TCNQ]. Mol Cryst Liq Cryst 273:111–116Google Scholar
  90. 90.
    Brandon EJ, Miller JS, Brinckerhoff WB, Zhou P, Epstein AJ (1994) In: 4th international conference on molecule based magnets, Salt Lake City, October 1994Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daopeng Zhang
    • 1
    • 2
  • Wenlong Lan
    • 2
  • Zhen Zhou
    • 2
  • Lu Yang
    • 2
  • Qingyun Liu
    • 3
  • Yongzhong Bian
    • 1
    Email author
  • Jianzhuang Jiang
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.College of Chemical and Chemical EngineeringShandong University of TechnologyZiboPeople’s Republic of China
  3. 3.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations