Advertisement

Synthesis and Applications of Polymers Made by Inverse Vulcanization

  • Justin M. ChalkerEmail author
  • Max J. H. Worthington
  • Nicholas A. Lundquist
  • Louisa J. Esdaile
Review
Part of the following topical collections:
  1. Sulfur Chemistry

Abstract

Elemental sulfur is an abundant and inexpensive chemical feedstock, yet it is underused as a starting material in chemical synthesis. Recently, a process coined inverse vulcanization was introduced in which elemental sulfur is converted into polymers by ring-opening polymerization, followed by cross-linking with an unsaturated organic molecule such as a polyene. The resulting materials have high sulfur content (typically 50–90% sulfur by mass) and display a range of interesting properties such as dynamic S–S bonds, redox activity, high refractive indices, mid-wave IR transparency, and heavy metal affinity. These properties have led to a swell of applications of these polymers in repairable materials, energy generation and storage, optical devices, and environmental remediation. This article will discuss the synthesis of polymers by inverse vulcanization and review case studies on their diverse applications. An outlook is also presented to discuss future opportunities and challenges for further advancement of polymers made by inverse vulcanization.

Keywords

Inverse vulcanization Polymer Polysulfide Sulfur Sulfur polymer 

Notes

Acknowledgements

The authors thank Flinders University, The Australian Government Department of the Environment and Energy, AMP’s Tomorrow Fund, the South Australian Defence Innovation Partnership, and the Royal Society International Exchange Programme for financial support of their research program in the synthesis and applications of polymers made from sulfur. The authors also thank Dr Tom Hasell for helpful discussions.

References

  1. 1.
    Kutney G (2013) Sulfur: history, technology, applications and industry. ChemTec, TorontoGoogle Scholar
  2. 2.
    Apodaca LE (2017) Mineral commodity summaries 2016. US Department of the Interior, US Geological Survey, Reston, Virginia, p 162–163Google Scholar
  3. 3.
    Worthington MJH, Kucera RL, Chalker JM (2017) Green Chem 19:2748–2761Google Scholar
  4. 4.
    Griebel JJ, Glass RS, Char K, Pyun J (2016) Prog Polym Sci 58:90–125Google Scholar
  5. 5.
    Simpson RB (ed) (2002) Rubber basics. Rapra Technology, Shawbury, UKGoogle Scholar
  6. 6.
    Blight LB, Currell BR, Nash BJ, Scott TM, Stillo C (1980) Br Polym J 12:5–11Google Scholar
  7. 7.
    Currell BR, Williams AJ, Mooney AJ, Nash BJ (1975) Plasticization of sulfur. In: West J (ed) New uses of sulfur, vol 140. American Chemical Society, Washington, DC, pp 1–17Google Scholar
  8. 8.
    Kemp AR, Malm FS (1935) Ind Eng Chem 27:141–146Google Scholar
  9. 9.
    McBee WC, Sullivan TA, Fike HL (1985) Sulfur construction materials. United States Department of the Interior, Bureau of Mines, Washington, DC, Bulletin 678, pp 1–31Google Scholar
  10. 10.
    Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, Ji HJ, Dirlam PT, Glass RS, Wie JJ, Nguyen NA, Guralnick BW, Park J, Somogyi A, Theato P, Mackay ME, Sung Y-E, Char K, Pyun J (2013) Nat Chem 5:518–524PubMedGoogle Scholar
  11. 11.
    Meyer B (1976) Chem Rev 76:367–388Google Scholar
  12. 12.
    Shankarayya Wadi VK, Jena KK, Khawaja SZ, Yannakopoulou K, Fardis M, Mitrikas G, Karagianni M, Papavassiliou G, Alhassan SM (2018) ACS Omega 3:3330–3339Google Scholar
  13. 13.
    Zhang Y, Griebel JJ, Dirlam PT, Nguyen NA, Glass RS, Mackay ME, Char K, Pyun J (2017) J Polym Sci A: Polym Chem 55:107–116Google Scholar
  14. 14.
    Griebel JJ, Li G, Glass RS, Char K, Pyun J (2015) J Polym Sci Part A 53:173–177Google Scholar
  15. 15.
    Lundquist NA, Worthington MJH, Adamson N, Gibson CT, Johnston MR, Ellis AV, Chalker JM (2018) RSC Adv 8:1232–1236Google Scholar
  16. 16.
    Abraham AM, Kumar SV, Alhassan SM (2018) Chem Eng J 332:1–7Google Scholar
  17. 17.
    Wadi VS, Jena KK, Khawaja SZ, Ranagraj VM, Alhassan SM (2019) RSC Adv 9:4397–4403Google Scholar
  18. 18.
    Zhang Y, Pavlopoulos NG, Kleine TS, Karayilan M, Glass RS, Char K, Pyun J (2019) J Polym Sci Part A 57:7–12Google Scholar
  19. 19.
    Wu X, Smith JA, Petcher S, Zhang B, Parker DJ, Griffin JM, Hasell T (2019) Nat Commun 10:647PubMedPubMedCentralGoogle Scholar
  20. 20.
    Parker DJ, Jones HA, Petcher S, Cervini L, Griffin JM, Akhtar R, Hasell T (2017) J Mater Chem A 5:11682–11692Google Scholar
  21. 21.
    Hoefling A, Lee YJ, Theato P (2017) Macromol Chem Phys 218:1600303Google Scholar
  22. 22.
    Mark JE, Erman B, Roland CM (eds) (2013) The science and technology of rubber. Academic, OxfordGoogle Scholar
  23. 23.
    Lim J, Pyun J, Char K (2015) Angew Chem Int Ed 54:3249–3258Google Scholar
  24. 24.
    Boyd DA (2016) Angew Chem Int Ed 55:15486–15502Google Scholar
  25. 25.
    Mutlu H, Ceper EB, Li X, Yang J, Dong W, Ozmen MM, Theato P (2019) Macromol Rapid Commun 40:1800650Google Scholar
  26. 26.
    Griebel JJ, Nguyen NA, Astashkin AV, Glass RS, Mackay ME, Char K, Pyun J (2014) ACS Macro Lett 3:1258–1261Google Scholar
  27. 27.
    Griebel JJ, Nguyen NA, Namnabat S, Anderson LE, Glass RS, Norwood RA, Mackay ME, Char K, Pyun J (2015) ACS Macro Lett 4:862–866Google Scholar
  28. 28.
    Crockett MP, Evans AM, Worthington MJH, Albuquerque IS, Slattery AD, Gibson CT, Campbell JA, Lewis DA, Bernardes GJL, Chalker JM (2016) Angew Chem Int Ed 55:1714–1718Google Scholar
  29. 29.
    Griebel JJ, Namnabat S, Kim ET, Himmelhuber R, Moronta DH, Chung WJ, Simmonds AG, Kim K-J, van der Laan J, Nguyen NA, Dereniak EL, Mackay ME, Char K, Glass RS, Norwood RA, Pyun J (2014) Adv Mater 26:3014–3018PubMedGoogle Scholar
  30. 30.
    Worthington MJH, Kucera RL, Albuquerque IS, Gibson CT, Sibley A, Slattery AD, Campbell JA, Alboaiji SFK, Muller KA, Young J, Adamson N, Gascooke JR, Jampaiah D, Sabri YM, Bhargava SK, Ippolito SJ, Lewis DA, Quinton JS, Ellis AV, Johs A, Bernardes GJL, Chalker JM (2017) Chem Eur J 23:16219–16230PubMedGoogle Scholar
  31. 31.
    Dirlam PT, Glass RS, Char K, Pyun J (2017) J Polym Sci. Part A: Polym Chem 55:1635–1668Google Scholar
  32. 32.
    Zhao F, Li Y, Feng W (2018) Small Methods 2:1800156Google Scholar
  33. 33.
    Fotouhi A, Auger DJ, Propp K, Longo S, Wild M (2016) Renew Sustain Energy Rev 56:1008–1021Google Scholar
  34. 34.
    Oleshko VP, Kim J, Schaefer JL, Hudson SD, Soles CL, Simmonds AG, Griebel JJ, Glass RS, Char K, Pyun J (2015) MRS Commun 5:353–364Google Scholar
  35. 35.
    Simmonds AG, Griebel JJ, Park J, Kim KR, Chung WJ, Oleshko VP, Kim J, Kim ET, Glass RS, Soles CL, Sung Y-E, Char K, Pyun J (2014) ACS Macro Lett 3:229–232Google Scholar
  36. 36.
    Hoefling A, Nguyen DT, Partovi-Azar P, Sebastiani D, Theato P, Song S-W, Lee YJ (2018) Chem Mater 30:2915–2923Google Scholar
  37. 37.
    Dirlam PT, Simmonds AG, Kleine TS, Nguyen NA, Anderson LE, Klever AO, Florian A, Costanzo PJ, Theato P, Mackay ME, Glass RS, Char K, Pyun J (2015) RSC Adv 5:24718–24722Google Scholar
  38. 38.
    Jiang Q, Li Y, Zhao X, Xiong P, Yu X, Xu Y, Chen L (2018) J Mater Chem A 6:17977–17981Google Scholar
  39. 39.
    Chang A, Wu Q, Du X, Chen S, Shen J, Song Q, Xie J, Wu W (2016) Chem Commun 52:4525–4528Google Scholar
  40. 40.
    Je SH, Hwang TH, Talapaneni SN, Buyukcakir O, Kim HJ, Yu J-S, Woo S-G, Jang MC, Son BK, Coskun A, Choi JW (2016) ACS Energy Lett 1:566–572Google Scholar
  41. 41.
    Arslan M, Kiskan B, Yagci Y (2016) Macromolecules 49:767–773Google Scholar
  42. 42.
    Fu C, Li G, Zhang J, Cornejo B, Piao SS, Bozhilov KN, Haddon RC, Guo J (2016) ACS Energy Lett 1:115–120Google Scholar
  43. 43.
    Dirlam PT, Simmonds AG, Shallcross RC, Arrington KJ, Chung WJ, Griebel JJ, Hill LJ, Glass RS, Char K, Pyun J (2015) ACS Macro Lett 4:111–114Google Scholar
  44. 44.
    Oschmann B, Park J, Kim C, Char K, Sung Y-E, Zentel R (2015) Chem Mater 27:7011–7017Google Scholar
  45. 45.
    Zeng S, Li L, Xie L, Zhao D, Wang N, Chen S (2017) ChemSusChem 10:3378–3386PubMedGoogle Scholar
  46. 46.
    Choudhury S, Srimuk P, Raju K, Tolosa A, Fleischmann S, Zeiger M, Ozoemena KI, Borchardt L, Presser V (2018) Sustain Energy Fuels 2:133–146Google Scholar
  47. 47.
    Hu G, Sun Z, Shi C, Fang R, Chen J, Hou P, Liu C, Cheng H-M, Li F (2017) Adv Mater 29:1603835Google Scholar
  48. 48.
    Li B, Li S, Xu J, Yang S (2016) Energy Environ Sci 9:2025–2030Google Scholar
  49. 49.
    Chang C-H, Manthiram A (2018) ACS Energy Lett 3:72–77Google Scholar
  50. 50.
    Shen K, Mei H, Li B, Ding J, Yang S (2018) Adv Energy Mater 8:1701527Google Scholar
  51. 51.
    Gomez I, Mantione D, Leonet O, Blazquez JA, Mecerreyes D (2018) ChemElectroChem 5:260–265Google Scholar
  52. 52.
    Dong P, Han KS, Lee J-I, Zhang X, Cha Y, Song M-K (2018) ACS Appl Mater Interfaces 10:29565–29573PubMedGoogle Scholar
  53. 53.
    Gomez I, Mecerreyes D, Blazquez JA, Leonet O, Ben Youcef H, Li C, Gómez-Cámer JL, Bundarchuk O, Rodriguez-Martinez L (2016) J Power Sources 329:72–78Google Scholar
  54. 54.
    Gomez I, Leonet O, Blazquez JA, Mecerreyes D (2016) ChemSusChem 9:3419–3425PubMedGoogle Scholar
  55. 55.
    Hoefling A, Nguyen DT, Lee YJ, Song S-W, Theato P (2017) Mater Chem Front 1:1818–1822Google Scholar
  56. 56.
    Wu F, Chen S, Srot V, Huang Y, Sinha SK, van Aken PA, Maier J, Yu Y (2018) Adv Mater 30:1706643Google Scholar
  57. 57.
    Shukla S, Ghosh A, Roy PK, Mitra S, Lochab B (2016) Polymer 99:349–357Google Scholar
  58. 58.
    Ghosh A, Shukla S, Khosla GS, Lochab B, Mitra S (2016) Sci Rep 6:25207PubMedPubMedCentralGoogle Scholar
  59. 59.
    Arslan M, Kiskan B, Yagci Y (2017) Sci Rep 7:5207PubMedPubMedCentralGoogle Scholar
  60. 60.
    Lin H-K, Liu Y-L (2017) Macromol Rapid Commun 38:1700051Google Scholar
  61. 61.
    Parker DJ, Chong ST, Hasell T (2018) RSC Adv 8:27892–27899Google Scholar
  62. 62.
    Xin Y, Peng H, Xu J, Zhang J (2019) Adv Funct Mater 29:1808989Google Scholar
  63. 63.
    Zhang Y, Konopka KM, Glass RS, Char K, Pyun J (2017) Polym Chem 8:5167–5173Google Scholar
  64. 64.
    Westerman CR, Jenkins CL (2018) Macromolecules 51:7233–7238Google Scholar
  65. 65.
    Kleine TS, Nguyen NA, Anderson LE, Namnabat S, LaVilla EA, Showghi SA, Dirlam PT, Arrington CB, Manchester MS, Schwiegerling J, Glass RS, Char K, Norwood RA, Mackay ME, Pyun J (2016) ACS Macro Lett 5:1152–1156Google Scholar
  66. 66.
    Boyd DA, Baker CC, Myers JD, Nguyen VQ, Drake GA, McClain CC, Kung FH, Bowman SR, Kim W, Sanghera JS (2017) Chem Commun 53:259–262Google Scholar
  67. 67.
    Anderson LE, Kleine TS, Zhang Y, Phan DD, Namnabat S, LaVilla EA, Konopka KM, Ruiz Diaz L, Manchester MS, Schwiegerling J, Glass RS, Mackay ME, Char K, Norwood RA, Pyun J (2017) ACS Macro Lett 6:500–504Google Scholar
  68. 68.
    Kleine TS, Ruiz Diaz L, Konopka KM, Anderson LE, Pavlopolous NG, Lyons NP, Kim ET, Kim Y, Glass RS, Char K, Norwood RA, Pyun J (2018) ACS Macro Lett 7:875–880Google Scholar
  69. 69.
    Boyd DA, Nguyen VQ, McClain CC, Kung FH, Baker CC, Myers JD, Hunt MP, Kim W, Sanghera JS (2019) ACS Macro Lett 8:113–116Google Scholar
  70. 70.
    Hasell T, Parker DJ, Jones HA, McAllister T, Howdle SM (2016) Chem Commun 52:5383–5386Google Scholar
  71. 71.
    Thielke MW, Bultema LA, Brauer DD, Richter B, Fischer M, Theato P (2016) Polymers 8:266PubMedCentralGoogle Scholar
  72. 72.
    Akay S, Kayan B, Kalderis D, Arslan M, Yagci Y, Kiskan B (2017) J Appl Polym Sci 134:45306Google Scholar
  73. 73.
    Worthington MJH, Chalker JM (2016) Mercury adsorbent material and uses thereof. WO 2017181217, priority application AU 2016-901470, April 20, 2016Google Scholar
  74. 74.
    Esdaile LJ, Chalker JM (2018) Chem Eur J 24:6905–6916PubMedGoogle Scholar
  75. 75.
    Worthington MJH, Shearer CJ, Esdaile LJ, Campbell JA, Gibson CT, Legg SK, Yin Y, Lundquist NA, Gascooke JR, Albuquerque IS, Shapter JG, Andersson GG, Lewis DA, Bernardes GJL, Chalker JM (2018) Adv Sustainable Syst 2:1800024Google Scholar
  76. 76.
    Mann M, Kruger JE, Andari F, McErlean J, Gascooke JR, Smith JA, Worthington MJH, McKinley CCC, Campbell JA, Lewis DA, Hasell T, Perkins MV, Chalker JM (2019) Org Biomol Chem 17:1929–1936PubMedGoogle Scholar
  77. 77.
    Valle SF, Giroto AS, Klaic R, Guimarães GGF, Ribeiro C (2019) Polym Degrad Stab 162:102–105Google Scholar
  78. 78.
    Bear JC, McGettrick JD, Parkin IP, Dunnill CW, Hasell T (2016) Microporous Mesoporous Mater 232:189–195Google Scholar
  79. 79.
    Lee J-SM, Parker DJ, Cooper AI, Hasell T (2017) J Mater Chem A 5:18603–18609Google Scholar
  80. 80.
    Je SH, Buyukcakir O, Kim D, Coskun A (2016) Chem 1:482–493Google Scholar
  81. 81.
    Martin TR, Mazzio KA, Hillhouse HW, Luscombe CK (2015) Chem Commun 51:11244–11247Google Scholar
  82. 82.
    McNaughter PD, Bear JC, Mayes AG, Parkin IP, O’Brien P (2017) R Soc Open Sci 4:170383PubMedPubMedCentralGoogle Scholar
  83. 83.
    Zhang C, Yan C, Xue Z, Yu W, Xie Y, Wang T (2016) Small 12:5320–5328PubMedGoogle Scholar
  84. 84.
    Bear JC, Peveler WJ, McNaughter PD, Parkin IP, O’Brien P, Dunnill CW (2015) Chem Commun 51:10467–10470Google Scholar
  85. 85.
    Kim ET, Chung WJ, Lim J, Johe P, Glass RS, Pyun J, Char K (2014) Polym Chem 5:3617–3623Google Scholar
  86. 86.
    Deng Z, Hoefling A, Theato P, Lienkamp K (2018) Macromol Chem Phys 219:1700497Google Scholar
  87. 87.
    Zhuo SF, Huang Y, Liu C, Wang H, Zhang B (2014) Chem Commun 50:11208–11210Google Scholar
  88. 88.
    Liu P, Gardner JM, Kloo L (2015) Chem Commun 51:14660–14662Google Scholar
  89. 89.
    Liu P, Kloo L, Gardner JM (2017) ChemPhotoChem 1:363–368Google Scholar
  90. 90.
    Yu S, Kwon H, Noh HR, Park B-I, Park NK, Choi H-J, Choi S-C, Kim GD (2015) RSC Adv 5:36030–36035Google Scholar
  91. 91.
    Gupta V, Ghosh S, Phapale V (2018) Phosphorus Sulfur Silicon Relat Elem 193:752–758Google Scholar
  92. 92.
    Oishi S, Oi K, Kuwabara J, Omoda R, Aihara Y, Fukuda T, Takahashi T, Choi J-C, Watanabe M, Kanbara T (2019) ACS Appl Polym Mater 1:1195–1202Google Scholar
  93. 93.
    Diez S, Hoefling A, Theato P, Pauer W (2017) Polymers 9:59PubMedCentralGoogle Scholar
  94. 94.
    Smith JA, Wu X, Berry NG, Hasell T (2018) J Polym Sci A 56:1777–1781Google Scholar
  95. 95.
    Zhang Y, Kleine TS, Carothers KJ, Phan DD, Glass RS, Mackay ME, Char K, Pyun J (2018) Polym Chem 9:2290–2294Google Scholar
  96. 96.
    Gomez I, De Anastro AF, Leonet O, Blazquez JA, Grande H-J, Pyun J, Mecerreyes D (2018) Macromol Rapid Commun 39:1800529Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for NanoScale Science and Technology, College of Science and EngineeringFlinders UniversityBedford ParkAustralia

Personalised recommendations