Advertisement

Quaternary Ammonium Compounds: Simple in Structure, Complex in Application

  • Filip BurešEmail author
Review
  • 123 Downloads

Abstract

Quaternary ammonium compounds, referred to as QACs, are cationic substances with a structure on the edge of organic and inorganic chemistry and unique physicochemical properties. The purpose of the present work is to introduce QACs and their wide application potential. Fundamental properties, methods of preparation, and utilization in organic synthesis are reviewed. Modern applications and the use of QACs as reactive substrates, reagents, phase-transfer catalysts, ionic liquids, electrolytes, frameworks, surfactants, herbicides, and antimicrobials are further covered. A brief discussion of the health and environmental impact of QACs is also provided. The emphasis is largely on tetraalkylammonium compounds bearing linear alkyl chains.

Keywords

Quaternary ammonium compounds QAC Synthesis Surfactant Herbicide Antimicrobial 

Notes

References

  1. 1.
    Hofmann AW (1851) Beiträge zur Kenntniss der fluchtigen organischen Basen. Justus Liebigs Ann Chem 78:253–286CrossRefGoogle Scholar
  2. 2.
    Weston CW, Papcun JR, Dery M (2003) Ammonium compounds. In: Kirk–Othmer encyclopedia of chemical technology, vol 2. Wiley, NY, pp 711–762.  https://doi.org/10.1002/0471238961.0113131523051920.a01.pub2
  3. 3.
    OECD (2004) The 2004 OECD list of high production volume Chemicals. http://www.oecd.org/chemicalsafety/risk-assessment/33883530.pdf. Accessed 31 Jul 2018
  4. 4.
    Solomons TWG (1976) Organic chemistry. Wiley, OxfordGoogle Scholar
  5. 5.
    Chiappe C, Pieraccini D (2003) Direct mono-N-alkylation of amines in ionic liquids: chemoselectivity and reactivity. Green Chem 5:193–197.  https://doi.org/10.1039/b211340f CrossRefGoogle Scholar
  6. 6.
    Pham TH, Olsson JS, Jannasch P (2017) N-Spirocyclic quaternary ammonium ionenes for anion-exchange membranes. J Am Chem Soc 139:2888–2891.  https://doi.org/10.1021/jacs.6b12944 CrossRefPubMedGoogle Scholar
  7. 7.
    Zagorodni AA (2007) Ion exchange materials. Elsevier, OxfordCrossRefGoogle Scholar
  8. 8.
    Dockx J (1973) Quaternary ammonium compounds in organic synthesis. Synthesis (Stuttg) 14:441–456.  https://doi.org/10.1055/s-1973-22233 CrossRefGoogle Scholar
  9. 9.
    Spettel M, Pollice R, Schnürch M (2017) Quaternary ammonium salts as alkylating reagents in C–H activation chemistry. Org Lett 19:4287–4290.  https://doi.org/10.1021/acs.orglett.7b01946 CrossRefPubMedGoogle Scholar
  10. 10.
    Yu W, Yang S, Xiong F et al (2018) Palladium-catalyzed carbonylation of benzylic ammonium salts to amides and esters: via C–N bond activation. Org Biomol Chem 16:3099–3103.  https://doi.org/10.1039/c8ob00488a CrossRefPubMedGoogle Scholar
  11. 11.
    Pine SH (2011) The base-promoted rearrangements of quaternary ammonium salts. Organic reactions. Wiley, OxfordGoogle Scholar
  12. 12.
    Li JJ (2014) Name reactions, pp 580–581.  https://doi.org/10.1007/978-3-319-03979-4 CrossRefGoogle Scholar
  13. 13.
    Gonçalves-Farbos MH, Vial L, Lacour J (2008) Enantioselective [1,2]-Stevens rearrangement of quaternary ammonium salts. A mechanistic evaluation. Chem Commun.  https://doi.org/10.1039/b716488b CrossRefGoogle Scholar
  14. 14.
    Orejarena Pacheco JC, Lahm G, Opatz T (2013) Synthesis of alkaloids by stevens rearrangement of nitrile-stabilized ammonium ylides: (±)-laudanosine, (±)-laudanidine, (±)-armepavine, (±)-7-methoxycryptopleurine, and (±)-xylopinine. J Org Chem 78:4985–4992.  https://doi.org/10.1021/jo400659n CrossRefPubMedGoogle Scholar
  15. 15.
    Bos ME (2001) Benzyltrimethylammonium hydroxide. Encycl Reagents Org Synth 1:1–3.  https://doi.org/10.1002/047084289X.rb079 CrossRefGoogle Scholar
  16. 16.
    Bestmann HJ, Frey H (1980) Reationen mit Phosphinalkylenen, XXXIX. Neue Aufbaumöglichkeiten für 1-Bromacetylene und aromatische sowie konjugierte Enine. Liebigs Ann der Chem 1980:2061–2071.  https://doi.org/10.1002/jlac.198019801216 CrossRefGoogle Scholar
  17. 17.
    Kivala M, Diederich F (2009) Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. Acc Chem Res 42:235–248.  https://doi.org/10.1021/ar8001238 CrossRefPubMedGoogle Scholar
  18. 18.
    Klikar M, Solanke P, Tydlitát J, Bureš F (2016) Alphabet-inspired design of (hetero)aromatic push–pull chromophores. Chem Rec.  https://doi.org/10.1002/tcr.201600032 CrossRefPubMedGoogle Scholar
  19. 19.
    Otaka H, Ikeda J, Tanaka D, Tobe M (2014) Construction of 3,5-substituted 1,2,4-oxadiazole rings triggered by tetrabutylammonium hydroxide: a highly efficient and fluoride-free ring closure reaction of O-acylamidoximes. Tetrahedron Lett 55:979–981.  https://doi.org/10.1016/j.tetlet.2013.12.016 CrossRefGoogle Scholar
  20. 20.
    Clark JH (1980) Fluoride ion as a base in organic synthesis. Chem Rev 80:429–452.  https://doi.org/10.1021/cr60327a004 CrossRefGoogle Scholar
  21. 21.
    Denmark SE, Sweis RF (2004) Organosilicon compounds in cross-coupling reactions. Metal-catalyzed cross-coupling reactions, second, completely revised and enlarged edition, vol 1. Wiley, Oxfod, pp 163–216CrossRefGoogle Scholar
  22. 22.
    Sharma RK, Fry JL (1983) Instability of anhydrous tetra-n-alkylammonium fluorides. J Org Chem 48:2112–2114.  https://doi.org/10.1021/jo00160a041 CrossRefGoogle Scholar
  23. 23.
    Greene TW et al (1999) Wuts PGM, protective groups in organic. Wiley, OxfodCrossRefGoogle Scholar
  24. 24.
    Kulhánek J, Bureš F, Ludwig M (2009) Convenient methods for preparing p-conjugated linkers as building blocks for modular chemistry. Beilstein J Org Chem 5:1–5.  https://doi.org/10.3762/bjoc.5.11 CrossRefGoogle Scholar
  25. 25.
    Mukhopadhyay A, Maka VK, Moorthy JN (2016) Fluoride-triggered ring-opening of photochromic diarylpyrans into merocyanine dyes: naked-eye sensing in subppm levels. J Org Chem 81:7741–7750.  https://doi.org/10.1021/acs.joc.6b01361 CrossRefPubMedGoogle Scholar
  26. 26.
    Sun H, DiMagno SG (2005) Anhydrous tetrabutylammonium fluoride. J Am Chem Soc 127:2050–2051.  https://doi.org/10.1021/ja0440497 CrossRefPubMedGoogle Scholar
  27. 27.
    Starks CM, Liotta CL, Halpern ME (1994) Phase-transfer catalysis: fundamentals, applications, and industrial perspectives. Springer, DordrechtCrossRefGoogle Scholar
  28. 28.
    Hashimoto T, Maruoka K (2007) Recent development and application of chiral phase-transfer catalysts. Chem Rev 107:5656–5682.  https://doi.org/10.1021/cr068368n CrossRefPubMedGoogle Scholar
  29. 29.
    Makosza M (2000) Phase-transfer catalysis. A general green methodology in organic synthesis. Pure Appl Chem 72:1399–1403.  https://doi.org/10.1351/pac200072071399 CrossRefGoogle Scholar
  30. 30.
    Selvi S, Nanthini S (2012) The basic principle of phase-transfer catalysis, some mechanistic aspects and important applications. Int J Sci Technol Res 1:61–63.  https://doi.org/10.1002/9783527622627.ch1 CrossRefGoogle Scholar
  31. 31.
    Yen YS, Ni JS, Lin TY et al (2015) Imidazole-based sensitizers containing double anchors for dye-sensitized solar cells. Eur J Org Chem 2015:7367–7377.  https://doi.org/10.1002/ejoc.201501131 CrossRefGoogle Scholar
  32. 32.
    Sankova N, Semeykina V, Selishchev D et al (2018) Influence of tetraalkylammonium compounds on photocatalytic and physical properties of TiO2. Catal Lett 148:2391–2407.  https://doi.org/10.1007/s10562-018-2455-8 CrossRefGoogle Scholar
  33. 33.
    Payagala T, Armstrong DW (2012) Chiral ionic liquids: a compendium of syntheses and applications (2005–2012). Chirality 24:17–53.  https://doi.org/10.1002/chir.21975 CrossRefPubMedGoogle Scholar
  34. 34.
    Special Issue on Ionic liquids (2017). Chem Rev 117:6633–7240. https://pubs.acs.org/toc/chreay/117/10
  35. 35.
    Bin ZZ, Matsumoto H, Tatsumi K (2005) Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem A Eur J 11:752–766.  https://doi.org/10.1002/chem.200400817 CrossRefGoogle Scholar
  36. 36.
    Lethesh KC, Dehaen W, Binnemans K (2014) Base stable quaternary ammonium ionic liquids. RSC Adv 4:4472–4477.  https://doi.org/10.1039/c3ra45126g CrossRefGoogle Scholar
  37. 37.
    Pernak J, Świerczyńska A, Walkiewicz F et al (2009) Long alkyl chain bis-quaternary ammonium-based ionic liquids as biologically active xanthenes dyes. J Braz Chem Soc 20:839–845Google Scholar
  38. 38.
    Pernak J, Smiglak M, Griffin ST et al (2006) Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chem 8:798–806.  https://doi.org/10.1039/b604353d CrossRefGoogle Scholar
  39. 39.
    Metcalfe LD, Martin RJ, Schmitz AA (1966) Titration of long-chain quaternary ammonium compounds using tetraphenylboron. J Am Oil Chem Soc 43:355–357.  https://doi.org/10.1007/BF02646787 CrossRefGoogle Scholar
  40. 40.
    Elgrishi N, Rountree KJ, McCarthy BD et al (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95:197–206.  https://doi.org/10.1021/acs.jchemed.7b00361 CrossRefGoogle Scholar
  41. 41.
    Elgrishi N, Rountree KJ, McCarthy BD et al (1996) Recycling of the supporting electrolyte tetra (n-butyl) ammonium hexafluorophosphate from used electrolyte solutions. Curr Sep 2:53–56Google Scholar
  42. 42.
    Watanabe M, Thomas ML, Zhang S et al (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117:7190–7239.  https://doi.org/10.1021/acs.chemrev.6b00504 CrossRefPubMedGoogle Scholar
  43. 43.
    Selvamani V, Suryanarayanan V, Velayutham D, Gopukumar S (2016) Asymmetric tetraalkyl ammonium cation-based ionic liquid as an electrolyte for lithium-ion battery applications. J Solid State Electrochem 20:2283–2293.  https://doi.org/10.1007/s10008-016-3248-x CrossRefGoogle Scholar
  44. 44.
    Bai R, Sun Q, Wang N et al (2016) Simple quaternary ammonium cations-templated syntheses of extra-large pore germanosilicate zeolites. Chem Mater 28:6455–6458.  https://doi.org/10.1021/acs.chemmater.6b03179 CrossRefGoogle Scholar
  45. 45.
    Shen X, Mao W, Ma Y et al (2018) Mesoporous MFI zeolite with a 2D square structure directed by surfactants with an azobenzene tail group. Chem A Eur J 24:8615–8623.  https://doi.org/10.1002/chem.201800307 CrossRefGoogle Scholar
  46. 46.
    Zones SI, Olmstead MM, Santilli DS (1992) Guest/host relationships in the synthesis of large pore zeolite SSZ-26 from a propellane quaternary ammonium compound. J Am Chem Soc 114:4195–4201.  https://doi.org/10.1021/ja00037a023 CrossRefGoogle Scholar
  47. 47.
    Chapoy A, Anderson R, Tohidi B (2007) Low-pressure molecular hydrogen storage in semi-clathrate hydrates of quaternary ammonium compounds. J Am Chem Soc 129:746–747.  https://doi.org/10.1021/ja066883x CrossRefPubMedGoogle Scholar
  48. 48.
    Shishatskiy S, Pauls JR, Nunes SP, Peinemann KV (2010) Quaternary ammonium membrane materials for CO2 separation. J Memb Sci 359:44–53.  https://doi.org/10.1016/j.memsci.2009.09.006 CrossRefGoogle Scholar
  49. 49.
    Ramanathan M, Shrestha LK, Mori T et al (2013) Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. Phys Chem Chem Phys 15:10580–10611.  https://doi.org/10.1039/c3cp50620g CrossRefPubMedGoogle Scholar
  50. 50.
    Haq ZU, Rehman N, Ali F et al (2017) Physico-chemical properties of cationic surfactant cetyltrimethylammonium bromide in the presence of electrolyte. J Mater Environ Sci 8:1029–1038Google Scholar
  51. 51.
    Mehan S, Aswal VK, Kohlbrecher J (2014) Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes. Langmuir 30:9941–9950.  https://doi.org/10.1021/la502410v CrossRefPubMedGoogle Scholar
  52. 52.
    Evonik Nutrition & Care GmbH (2018) Metal protection though corrosion inhibition. https://www.metal-working-fluids.com/product/mwf/en/products/corrosion-inhibitors/. Accessed 30 Aug 2018
  53. 53.
    Mishra S, Tyagi VK (2007) Ester Quats: the novel class of cationic fabric softeners. J Oleo Sci 56:269–276.  https://doi.org/10.5650/jos.56.269 CrossRefPubMedGoogle Scholar
  54. 54.
    Grand View Research (2018) Esterquats market analysis by application. https://www.grandviewresearch.com/industry-analysis/esterquats-market. Accessed 30 Aug 2018
  55. 55.
    Pritchard G (1998) Antistatic Agents. Plastic additives: an A–Z reference. Chapman & Hall, London, pp 108–114CrossRefGoogle Scholar
  56. 56.
    Wahle B, Falkowski J (2002) Softeners in textile processing. Part 1: an overview. Rev Prog Color Relat Top 32:118–124.  https://doi.org/10.1111/j.1478-4408.2002.tb00255.x CrossRefGoogle Scholar
  57. 57.
    Maity NC, Kartha KPR, Srivastava HC (1984) Synthetic durable antistatic agent for polyester fabrics. Colourage 31:11–12Google Scholar
  58. 58.
    (2018) Pesticide action network. http://www.panna.org/. Accessed 31 Aug 2018
  59. 59.
    Pateiro-Moure M, Arias-Estévez M, Simal-Gándara J (2013) Critical review on the environmental fate of quaternary ammonium herbicides in soils devoted to vineyards. Environ Sci Technol 47:4984–4998.  https://doi.org/10.1021/es400755h CrossRefPubMedGoogle Scholar
  60. 60.
    Winsberg J, Hagemann T, Janoschka T et al (2017) Redox-flow batteries: from metals to organic redox-active materials. Angew Chemie Int Ed 56:686–711.  https://doi.org/10.1002/anie.201604925 CrossRefGoogle Scholar
  61. 61.
    Beh ES, De Porcellinis D, Gracia RL et al (2017) A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett 2:639–644.  https://doi.org/10.1021/acsenergylett.7b00019 CrossRefGoogle Scholar
  62. 62.
    Picó Y, Font G, Moltó JC, Mañes J (2000) Solid-phase extraction of quaternary ammonium herbicides. J Chromatogr A 885:251–271.  https://doi.org/10.1016/S0021-9673(99)01145-0 CrossRefPubMedGoogle Scholar
  63. 63.
    Castro R, Moyano E, Galceran MT (2001) Determination of quaternary ammonium pesticides by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A 914:111–121.  https://doi.org/10.1016/S0021-9673(01)00523-4 CrossRefPubMedGoogle Scholar
  64. 64.
    Galceran MT, Carneiro MC, Diez M, Puignou L (1997) Separation of quaternary ammonium herbicides by capillary electrophoresis with indirect UV detection. J Chromatogr A 782:289–295.  https://doi.org/10.1016/S0021-9673(97)00507-4 CrossRefGoogle Scholar
  65. 65.
    Chen Z, Álvarez-Pérez M, Navarro-Villoslada F et al (2014) Fluorescent sensing of “quat” herbicides with a multifunctional pyrene-labeled monomer and molecular imprinting. Sens Actuators B Chem 191:137–142.  https://doi.org/10.1016/j.snb.2013.09.097 CrossRefGoogle Scholar
  66. 66.
    Gerba CP (2015) Quaternary ammonium biocides: efficacy in application. Appl Environ Microbiol 81:464–469.  https://doi.org/10.1128/AEM.02633-14 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Dixon RE, Kaslow RA, Mackel DC et al (1976) Aqueous quaternary ammonium antiseptics and disinfectants: use and misuse. JJ Am Med Assoc 236:2415–2417.  https://doi.org/10.1001/jama.1976.03270220035031 CrossRefGoogle Scholar
  68. 68.
    Zhu P, Sun G (2004) Antimicrobial finishing of wool fabrics using quaternary ammonium salts. J Appl Polym Sci 93:1037–1041.  https://doi.org/10.1002/app.20563 CrossRefGoogle Scholar
  69. 69.
    Domagk G (1935) Eine neue Klasse von Desinfektionsmitteln. Dtsch Medizinische Wochenschrift 61:829–832.  https://doi.org/10.1055/s-0028-1129654 CrossRefGoogle Scholar
  70. 70.
    Ioannou CJ, Hanlon GW, Denyer SP (2007) Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus. Antimicrob Agents Chemother 51:296–306.  https://doi.org/10.1128/AAC.00375-06 CrossRefPubMedGoogle Scholar
  71. 71.
    Minbiole KPC, Jennings MC, Ator LE et al (2016) From antimicrobial activity to mechanism of resistance: the multifaceted role of simple quaternary ammonium compounds in bacterial eradication. Tetrahedron 72:3559–3566.  https://doi.org/10.1016/j.tet.2016.01.014 CrossRefGoogle Scholar
  72. 72.
    Kourai H, Yabuhara T, Shirai A et al (2006) Syntheses and antimicrobial activities of a series of new bis-quaternary ammonium compounds. Eur J Med Chem 41:437–444.  https://doi.org/10.1016/j.ejmech.2005.10.021 CrossRefPubMedGoogle Scholar
  73. 73.
    Thorsteinsson T, Másson M, Kristinsson KG et al (2003) Soft antimicrobial agents: synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds. J Med Chem 46:4173–4181.  https://doi.org/10.1021/jm030829z CrossRefPubMedGoogle Scholar
  74. 74.
    Mukherjee M, De S (2018) Antibacterial polymeric membranes: a short review. Environ Sci Water Res Technol 4:1078–1104.  https://doi.org/10.1039/c8ew00206a CrossRefGoogle Scholar
  75. 75.
    Yudovin-Farber I, Beyth N, Weiss EI, Domb AJ (2010) Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles. J Nanoparticle Res 12:591–603.  https://doi.org/10.1007/s11051-009-9628-8 CrossRefGoogle Scholar
  76. 76.
    Lu G, Wu D, Fu R (2007) Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. React Funct Polym 67:355–366.  https://doi.org/10.1016/j.reactfunctpolym.2007.01.008 CrossRefGoogle Scholar
  77. 77.
    Dizman B, Elasri MO, Mathias LJ (2004) Synthesis and antimicrobial activities of new water-soluble bis-quaternary ammonium methacrylate polymers. J Appl Polym Sci 94:635–642.  https://doi.org/10.1002/app.20872 CrossRefGoogle Scholar
  78. 78.
    Antonucci JM, Zeiger DN, Tang K et al (2012) Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent Mater 28:219–228.  https://doi.org/10.1016/j.dental.2011.10.004 CrossRefPubMedGoogle Scholar
  79. 79.
    Asri LATW, Crismaru M, Roest S et al (2014) A shape-adaptive, antibacterial-coating of immobilized Quaternary-ammonium compounds tethered on hyperbranched polyurea and its mechanism of action. Adv Funct Mater 24:346–355.  https://doi.org/10.1002/adfm.201301686 CrossRefGoogle Scholar
  80. 80.
    Saif MJ, Anwar J, Munawar MA (2009) A novel application of quaternary ammonium compounds as antibacterial hybrid coating on glass surfaces. Langmuir 25:377–379.  https://doi.org/10.1021/la802878p CrossRefPubMedGoogle Scholar
  81. 81.
    Anthoni U, Christophersen C, Hougaard L, Nielsen PH (1991) Quaternary ammonium compounds in the biosphere—an example of a versatile adaptive strategy. Comp Biochem Physiol Part B Biochem 99B:1–18.  https://doi.org/10.1016/0305-0491(91)90002-U CrossRefGoogle Scholar
  82. 82.
    Cooper JC (1988) Review of the environmental ammonium toxicity of quaternary halides. Ecotoxicol Environ Saf 16:65–71.  https://doi.org/10.1016/0147-6513(88)90017-6 CrossRefPubMedGoogle Scholar
  83. 83.
    Zhang C, Cui F, Zeng GM et al (2015) Quaternary ammonium compounds (QACs): a review on occurrence, fate and toxicity in the environment. Sci Total Environ 518–519:352–362.  https://doi.org/10.1016/j.scitotenv.2015.03.007 CrossRefPubMedGoogle Scholar
  84. 84.
    Warren CR (2013) Quaternary ammonium compounds can be abundant in some soils and are taken up as intact molecules by plants. New Phytol 198:476–485.  https://doi.org/10.1111/nph.12171 CrossRefPubMedGoogle Scholar
  85. 85.
    Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A (2012) Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int J Antimicrob Agents 39:381–389.  https://doi.org/10.1016/j.ijantimicag.2012.01.011 CrossRefPubMedGoogle Scholar
  86. 86.
    Hegstad K, Langsrud S, Lunestad BT et al (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16:91–104.  https://doi.org/10.1089/mdr.2009.0120 CrossRefPubMedGoogle Scholar
  87. 87.
    Gonzalez M, Jégu J, Kopferschmitt MC et al (2014) Asthma among workers in healthcare settings: role of disinfection with quaternary ammonium compounds. Clin Exp Allergy 44:393–406.  https://doi.org/10.1111/cea.12215 CrossRefPubMedGoogle Scholar
  88. 88.
    Purohit A, Kopferschmitt-Kubler MC, Moreau C et al (2000) Quaternary ammonium compounds and occupational asthma. Int Arch Occup Environ Health 73:423–427.  https://doi.org/10.1007/s004200000162 CrossRefPubMedGoogle Scholar
  89. 89.
    Jing G, Zhou Z, Zhuo J (2012) Quantitative structure-activity relationship (QSAR) study of toxicity of quaternary ammonium compounds on Chlorella pyrenoidosa and Scenedesmus quadricauda. Chemosphere 86:76–82.  https://doi.org/10.1016/j.chemosphere.2011.09.021 CrossRefPubMedGoogle Scholar
  90. 90.
    Ismail ZZ, Tezel U, Pavlostathis SG (2010) Sorption of quaternary ammonium compounds to municipal sludge. Water Res 44:2303–2313.  https://doi.org/10.1016/j.watres.2009.12.029 CrossRefPubMedGoogle Scholar
  91. 91.
    Ruan T, Song S, Wang T et al (2014) Identification and composition of emerging quaternary ammonium compounds in municipal sewage sludge in China. Environ Sci Technol 48:4289–4297.  https://doi.org/10.1021/es4050314 CrossRefPubMedGoogle Scholar
  92. 92.
    Li X, Luo X, Mai B et al (2014) Occurrence of quaternary ammonium compounds (QACs) and their application as a tracer for sewage derived pollution in urban estuarine sediments. Environ Pollut 185:127–133.  https://doi.org/10.1016/j.envpol.2013.10.028 CrossRefPubMedGoogle Scholar
  93. 93.
    Vincent G, Kopferschmitt-Kubler MC, Mirabel P et al (2007) Sampling and analysis of quaternary ammonium compounds (QACs) traces in indoor atmosphere. Environ Monit Assess 133:25–30.  https://doi.org/10.1007/s10661-006-9556-3 CrossRefPubMedGoogle Scholar
  94. 94.
    Forman ME, Jennings MC, Wuest WM, Minbiole KPC (2016) Building a better quaternary ammonium compound (QAC): branched tetracationic antiseptic amphiphiles. Chem Med Chem 11:1401–1405.  https://doi.org/10.1002/cmdc.201600176 CrossRefPubMedGoogle Scholar
  95. 95.
    Jaglic Z, Cervinkova D (2012) Genetic basis of resistance to quaternary ammonium compounds—the qac genes and their role: a review. Vet Med (Praha) 57:275–281.  https://doi.org/10.17221/6013-VETMED CrossRefGoogle Scholar
  96. 96.
    Forman ME, Fletcher MH, Jennings MC et al (2016) Structure-resistance relationships: interrogating antiseptic resistance in bacteria with multicationic quaternary ammonium dyes. ChemMedChem 11:958–962.  https://doi.org/10.1002/cmdc.201600095 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Institute of Technology and Business in České BudějoviceČeské BudějoviceCzech Republic

Personalised recommendations