Advertisement

Emerging Trends in the Syntheses of Heterocycles Using Graphene-based Carbocatalysts: An Update

  • Sharoni Gupta
  • Rukhsar Banu
  • Chetna Ameta
  • Rakshit Ameta
  • Pinki Bala PunjabiEmail author
Review
  • 49 Downloads

Abstract

Graphene-based carbocatalysts owing to numerous amazing properties such as large specific surface area, high intrinsic mobility, excellent thermal and electrical conductivities, chemical stability, ease of functionalization, simple method of preparation, effortless recovery and recyclability have gained a superior position amongst the conventional homogeneous and heterogeneous catalysts. In this review, an endeavor has been made to highlight the syntheses of diverse heterocyclic compounds catalyzed by graphene-based catalysts. Further, the study also reveals that all the catalysts could be reused several times without significant loss in their catalytic activity. Additionally, most of the reactions catalyzed by graphene-based carbocatalysts were carried out at ambient temperature and under solvent-free conditions. Thus, the graphene-based catalysts do not merely act as efficient catalysts but also serve as sustainable, green catalysts. This review is divided into various sub-sections, each of which comprehensively describes the preparation of a particular heterocyclic scaffold catalyzed by graphene-derived carbocatalyst in addition to synthesis of graphene oxide and reduced graphene oxide, functionalization, and structural features governing their catalytic properties.

Graphical Abstract

Synthesis of heterocycles catalyzed by graphene-based carbocatalysts.

Keywords

Graphene-based carbocatalysts Heterocyclic compounds Sustainable Green catalysts Heterocyclic scaffold 

Notes

Acknowledgements

The authors, Sharoni Gupta and Rukhsar Banu, are thankful to University Grants Commission (UGC), New Delhi for providing financial assistance in the form of Maulana Azad National Fellowship.

References

  1. 1.
    Antonietti M, Navalón S, Dhakshinamoorthy A, Álvaro M, García H (2018) In: Dai L (ed) Carbon-based metal-free catalysts: design and applications. Wiley, New YorkGoogle Scholar
  2. 2.
    Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Chem Rev 114:6179–6212PubMedGoogle Scholar
  3. 3.
    Lam E, Luong JHT (2014) ACS Catal 4:3393–3410Google Scholar
  4. 4.
    Allen MJ, Tung VC, Kaner RB (2010) Chem Rev 110:132–145PubMedGoogle Scholar
  5. 5.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906–3924PubMedGoogle Scholar
  6. 6.
    Bharech S, Kumar R (2015) J Mater Sci Mech Eng 2:70–73Google Scholar
  7. 7.
    Singh RK, Kumar R, Singh DP (2016) RSC Adv 6:64993–65011Google Scholar
  8. 8.
    Olenych IB, Aksimentyeva OI, Monastyrskii LS, Horbenko YY, Partyka MV (2017) Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures. Nanoscale Res Lett.  https://doi.org/10.1186/s11671-017-2043-7 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Crit Rev Solid State 35:52–71Google Scholar
  10. 10.
    Bhuyan MSA, Uddin MN, Islam MM, Bipasha FA, Hossain SS (2016) Int Nano Lett 6:65–83Google Scholar
  11. 11.
    Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Small 7:1876–1902PubMedGoogle Scholar
  12. 12.
    Malas A, Bharati A, Verkinderen O, Goderis B, Moldenaers P, Cardinaels R (2017) Effect of the go reduction method on the dielectric properties, electrical conductivity and crystalline behavior of PEO/rGO nanocomposites. Polymers.  https://doi.org/10.3390/polym9110613 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brodie BC (1859) Philos Trans R Soc Lond 149:249–259Google Scholar
  14. 14.
    Staudenmaier L (1898) Ber Dtsch Chem Ges 31:1481–1487Google Scholar
  15. 15.
    Hofmann U, Konig E (1937) Z Anorg Allg Chem 234:311–336Google Scholar
  16. 16.
    Hofmann U, Holst R (1939) Ber Dtsch Chem Ges 72:754–771Google Scholar
  17. 17.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc.  https://doi.org/10.1021/ja01539a017 CrossRefGoogle Scholar
  18. 18.
    Cao N, Zhang Y (2015) Study of reduced graphene oxide preparation by Hummers’ method and related characterization. J Nanomater.  https://doi.org/10.1155/2015/168125 CrossRefGoogle Scholar
  19. 19.
    Alam SN, Sharma N, Kumar L (2017) Graphene 6:1–18Google Scholar
  20. 20.
    Han H-T, Kim H, Kwon S-J, Lee T-W (2017) Mater Sci Eng R Rep 118:1–43Google Scholar
  21. 21.
    Basu J, Basu JK, Bhattacharyya TK (2010) Int J Smart Nano Mater 1:201–223Google Scholar
  22. 22.
    Eda G, Fanchini G, Chhowalla M (2008) Nat Nanotechnol 3:270–274PubMedGoogle Scholar
  23. 23.
    Zhang LL, Zhou R, Zhao XS (2010) J Mater Chem 20:5983–5992Google Scholar
  24. 24.
    Yin Z, Zhu J, He Q, Cao X, Tan C, Chen H, Yan Q, Zhang H (2013) Graphene-based materials for solar cell applications. Adv Energy Mater.  https://doi.org/10.1002/aenm.201300574 CrossRefGoogle Scholar
  25. 25.
    Lin X-F, Zhang Z-Y, Yuan Z-K, Li J, Xiao X-F, Hong W, Chen X-D, Yu D-S (2016) Chin Chem Lett 27:1259–1270Google Scholar
  26. 26.
    Choi H, Kim H, Hwang S, Choi W, Jeon M (2011) Sol Energy Mater Sol Cells 95:323–325Google Scholar
  27. 27.
    Kumar TN (2014) IOSR-JMCE 11:71–81Google Scholar
  28. 28.
    Shahbazi R, Payan A, Fattahi M (2018) J Photochem Photobiol A 364:564–576Google Scholar
  29. 29.
    Low J, Yu J, Ho W (2015) J Phys Chem Lett 6:4244–4251PubMedGoogle Scholar
  30. 30.
    Xiang Q, Yu J (2013) J Phys Chem Lett 4:753–759PubMedGoogle Scholar
  31. 31.
    Xiang Q, Yu J, Jaroniec M (2012) Chem Soc Rev 41:782–796PubMedGoogle Scholar
  32. 32.
    Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review. Sensors.  https://doi.org/10.3390/s17102161 CrossRefPubMedGoogle Scholar
  33. 33.
    He Q, Wu S, Yin Z, Zhang H (2012) Chem Sci 3:1764–1772Google Scholar
  34. 34.
    Singh E, Meyyappann M, Nalwa HS (2017) ACS Appl Mater Interfaces 9:34544–34586PubMedGoogle Scholar
  35. 35.
    Wang H, Yuan X, Zeng G, Wu Y, Liu Y, Jiang Q, Gu S (2015) Adv Colloid Interface Sci 221:41–59PubMedGoogle Scholar
  36. 36.
    Cui X, Li Y, Bachmann S, Scalone M, Surkus A-E, Junge K, Topf C, Beller M (2015) J Am Chem Soc 2015(137):10652–10658Google Scholar
  37. 37.
    Kooti M, Karimi M, Nasiri E (2018) A novel copper complex supported on magnetic reduced graphene oxide: an efficient and green nanocatalyst for the synthesis of 1-amidoalkyl-2-naphthol derivatives. J Nanopart Res.  https://doi.org/10.1007/s11051-017-4107-0 CrossRefGoogle Scholar
  38. 38.
    Verma S, Verma D, Jain SL (2014) Tetrahedron Lett 55:2406–2409Google Scholar
  39. 39.
    Wang Z, Guowen HuG, Liu J, Liu W, Zhang H, Wang B (2015) Chem Commun 51:5069–5072Google Scholar
  40. 40.
    Sheldon RA, Downing RS (1999) Appl Catal A 189:163–183Google Scholar
  41. 41.
    Cole-Hamilton DJ (2003) Science 299:1702–1706PubMedGoogle Scholar
  42. 42.
    Liu F, Sun J, Zhu L, Meng X, Qi C, Xiao F-S (2012) J Mater Chem 22:5495–5502Google Scholar
  43. 43.
    Mohammadi O, Golestanzadeh M, Abdouss M (2017) New J Chem 41:11471–11497Google Scholar
  44. 44.
    Schafhaeutl C (1840) J Prakt Chem 21:129–157Google Scholar
  45. 45.
    Schafhaeutl C (1840) Philos Mag 16:570–590Google Scholar
  46. 46.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806–4814Google Scholar
  47. 47.
    Chen J, Yao B, Li C, Shi G (2013) Carbon 64:225–229Google Scholar
  48. 48.
    Yu H, Zhang B, Bulin C, Li R, Xing R (2016) Sci Rep 6:36143.  https://doi.org/10.1038/srep36143 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Carbon 49:3019–3023Google Scholar
  50. 50.
    Qiu L, Zhang H, Wang W, Chen Y, Wang R (2014) Appl Surf Sci 319:339–343Google Scholar
  51. 51.
    Yang Z-Z, Zheng QZ, Qiu H-X, Li J, Yang J-H (2015) New Carbon Mater 30:41–47Google Scholar
  52. 52.
    Zhang C, Lv W, Zhang W, Zheng X, Wu M-B, Wei W, Tao Y, Li Z, Yang Q-H (2013) Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li-S batteries. Adv Energy Mater.  https://doi.org/10.1002/aenm.201301565 CrossRefGoogle Scholar
  53. 53.
    Kanishka K, Silva HD, Huang H-H, Yoshimura M (2018) Appl Surf Sci 447:338–346Google Scholar
  54. 54.
    Wang J, Salihi EC, Siller L (2017) Mater Sci Eng, C 72:1–6Google Scholar
  55. 55.
    Gao J, Lui F, Lui Y, Ma N, Wang Z, Zhang X (2010) Chem Mater 22:2213–2218Google Scholar
  56. 56.
    Abdullah MF, Zakaria R, Zein SHS (2014) RSC Adv 4:34510–34518Google Scholar
  57. 57.
    Akhavan O, Kalaee M, Alavi ZS, Ghiasi SMA, Esfandiar A (2012) Carbon 50:3015–3025Google Scholar
  58. 58.
    Dreyer DR, Murali S, Zhu Y, Ruoff RS, Bielawski CW (2011) J Mater Chem 21:3443–3447Google Scholar
  59. 59.
    Esfandiar A, Akhavan O, Irajizad A (2011) J Mater Chem 21:10907–10914Google Scholar
  60. 60.
    Rani MN, Ananda S, Rangappa D (2017) Mater Today Proc 4:12300–12305Google Scholar
  61. 61.
    Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) ACS Nano 2:463–470PubMedPubMedCentralGoogle Scholar
  62. 62.
    Wang X, Zhi L, Mullen K (2008) Nano Lett 8:323–327PubMedGoogle Scholar
  63. 63.
    Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) J Am Chem Soc 131:15939–15944PubMedGoogle Scholar
  64. 64.
    Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Carbon 47:493–499Google Scholar
  65. 65.
    Wu Z-S, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng H-M (2009) ACS Nano 3:411–417PubMedGoogle Scholar
  66. 66.
    Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) J Phys Chem B 110:8535–8539PubMedGoogle Scholar
  67. 67.
    Yang J, Jo MR, Kang M, Huh YS, Jung H, Knag Y-M (2014) Carbon 73:106–113Google Scholar
  68. 68.
    Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, Jeong HY, Shin HS, Chhowalla M (2016) Science 353:1413–1416Google Scholar
  69. 69.
    Sreedhar D, Devireddy S, Veeredhi VR (2018) Mater Today Proc 5:3403–3410Google Scholar
  70. 70.
    Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Carbon 48:2118–2122Google Scholar
  71. 71.
    Mohandoss M, Gupta SS, Nelleri A, Pradeep T, Maliyekkal SM (2017) RSC Adv 7:957–963Google Scholar
  72. 72.
    Tu Y, Ichii T, Utsunomiya T, Sugimura H (2015) Appl Phys Lett 106:133105.  https://doi.org/10.1063/1.4916813 CrossRefGoogle Scholar
  73. 73.
    Rao CNR, Subrahmanyam KS, Matte HSSR, Abdulhakeem B, Govindaraj A, Barun D, Prashant K, Anupama G, Dattatray JL (2010) Sci Technol Adv Mater 11:054502.  https://doi.org/10.1088/1468-6996/11/5/054502 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H-B, Xiao F-S (2010) Nano Today 5:15–20Google Scholar
  75. 75.
    Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F et al (2009) Chem Euro J 15:6116–6120Google Scholar
  76. 76.
    Wang Z, Zhou X, Zhang J, Boey F, Zhang H (2010) J Phys Chem C 113:14071–14075Google Scholar
  77. 77.
    Feng X, Chen W, Yan L (2016) RSC Adv 6:80106–80113Google Scholar
  78. 78.
    Basirun WJ, Sookhakian M, Baradaran S, Mahmoundian MR, Ebadi M (2013) Nnaoscale Res Lett 8:397.  https://doi.org/10.1186/1556-27X-8-397 CrossRefGoogle Scholar
  79. 79.
    Ray SC (2015) Applications of graphene and graphene oxide-based nanomaterials. Elsevier, Amsterdam.  https://doi.org/10.1016/C2014-0-02615-9 CrossRefGoogle Scholar
  80. 80.
    Demazeau G (1999) J Mater Chem 9:15–18Google Scholar
  81. 81.
    Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS et al (2010) ACS Nano 4:3845–3852PubMedPubMedCentralGoogle Scholar
  82. 82.
    Mei X, Meng X, Wu F (2015) Physica E 68:81–86Google Scholar
  83. 83.
    Mungse HP, Sharma OP, Sugimura H, Khatri OP (2014) RSC Adv 4:22589–22595Google Scholar
  84. 84.
    Torres D, Arcelus-Arrillaga P, Millan M, Pinilla JL, Suelves I (2017) Nanomaterials 7:447.  https://doi.org/10.3390/nano7120447 CrossRefPubMedCentralGoogle Scholar
  85. 85.
    Pokharel P, Truong Q-T, Lee DS (2014) Compos B 64:187–193Google Scholar
  86. 86.
    Kumar R, Avasthi DK, Kaur A (2017) Sens Acutators B Chem 242:461–468Google Scholar
  87. 87.
    Chen D, Feng H, Li J (2012) Chem Rev 112:6027–6053PubMedGoogle Scholar
  88. 88.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228–240PubMedGoogle Scholar
  89. 89.
    Hofmann U, Holst R (1939) Ber Dtsch Chem Ges B 72:754–771Google Scholar
  90. 90.
    Ruess G (1946) Monatsh Chem 76:381–417Google Scholar
  91. 91.
    Clause A, Plass R, Boehm HP, Hofmann UZ (1957) Anorg Allg Chem 291:205–220Google Scholar
  92. 92.
    Scholz W, Boehm HPZ (1969) Anorg Allg Chem 369:322.  https://doi.org/10.1002/zaac.19693690322 CrossRefGoogle Scholar
  93. 93.
    Nakajima T, Mabuchi A, Hagiwara R (1988) Carbon 26:357–361Google Scholar
  94. 94.
    Nakajima T, Matsuo Y (1994) Carbon 32:469–475Google Scholar
  95. 95.
    Lerf A, He H, Riedl T, Forster M, Klinowski J (1997) J Solid State Ionics 101–103:857–862Google Scholar
  96. 96.
    Lerf A, Buchsteiner A, Pieper J, Schottl S, Dekany I, Szabo T, Boehm HP (2006) J Phys Chem Solids 67:1106–1110Google Scholar
  97. 97.
    Szabo T, Tombacz E, Illes E, Dekany I (2006) Carbon 44:537–545Google Scholar
  98. 98.
    Lui CH, Liu L, Mak KF, Flynn GW, Heinz TF (2009) Nature 462:339–341PubMedGoogle Scholar
  99. 99.
    Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, Dekany I (2006) Chem Mater 18:2740–2749Google Scholar
  100. 100.
    Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323:610–613PubMedGoogle Scholar
  101. 101.
    Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Nano Lett 7:3499–3503PubMedGoogle Scholar
  102. 102.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565Google Scholar
  103. 103.
    Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Adv Mater 22:4467–4472PubMedGoogle Scholar
  104. 104.
    Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Nano Lett 9:1058–1063Google Scholar
  105. 105.
    Si Y, Samulski ET (2008) Nano Lett 8:1679–1682PubMedGoogle Scholar
  106. 106.
    Casabianca LB, Shaibat MA, Cai W, Park S, Piner R, Ruoff RS, Ishii YJ (2010) Am Chem Soc 132:5672–5676Google Scholar
  107. 107.
    Lee V, Whittaker L, Jaye C, Baroudi KM, Fischer DA, Banerjee S (2009) Chem Mater 21:3905–3916Google Scholar
  108. 108.
    Saxena S, Tyson TA, Negusse E (2010) J Phys Chem Lett 1:3433Google Scholar
  109. 109.
    Lee DW, De Los Santos VL, Seo JW, Leon Felix L, Bustamante DA, Cole JM, Barnes CHW (2010) J Phys Chem B 114:5723–5728PubMedGoogle Scholar
  110. 110.
    Yang D, Velamakanni A, Bozokhi G, Park S, Stoller M, Piner RD et al (2009) Carbon 47:145–152Google Scholar
  111. 111.
    Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J (2013) Carbon 53:38–49Google Scholar
  112. 112.
    Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) J Phys Chem C 115:17009–17019Google Scholar
  113. 113.
    Xu J, Kruger P, Natori CR, Hayakawa K, Wu Z, Hatada K (2015) Phys Rev B 92:125408Google Scholar
  114. 114.
    Zhang WH, Carravetta V, Li ZY, Luo Y, Yang JL (2009) J Chem Phys 131:244505PubMedGoogle Scholar
  115. 115.
    Shahriary L, Athawale AA (2014) Int J Renew Energy Environ Eng 2:58–63Google Scholar
  116. 116.
    King AAK, Davies BR, Noorbehesht N, Newman P, Church TL, Harris AT et al (2016) Sci Rep 6:19491.  https://doi.org/10.1038/srep19491 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Akhavan O (2010) Carbon 48:509–519Google Scholar
  118. 118.
    Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez JD, Rojas-Cervantes ML, Martín-Aranda RM (1995) Carbon 33:1585–1592Google Scholar
  119. 119.
    Maclntosh AR, Harris KJ, Goward GR (2015) Chem Mater 28:360–367Google Scholar
  120. 120.
    Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Nat Chem 2:581–587PubMedGoogle Scholar
  121. 121.
    Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O et al (2009) Adv Funct Mater 19:2577–2583Google Scholar
  122. 122.
    Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109–162Google Scholar
  123. 123.
    Du X, Skachko I, Barker A, Andrei EY (2008) Nature Nanotech 3:491–495Google Scholar
  124. 124.
    Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Langmuir 24:10560–10564PubMedGoogle Scholar
  125. 125.
    Novoseleov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubunos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669Google Scholar
  126. 126.
    Groves MN, Malardier-Jugroot C, Jugroot M (2012) J Phys Chem C 116:10548–10556Google Scholar
  127. 127.
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Chem Rev 112:6156–6214PubMedGoogle Scholar
  128. 128.
    Chen XM, Wu GH, Chen JM, Chen X, Xie ZX, Wang XR (2011) J Am Chem Soc 133:3693–3695PubMedGoogle Scholar
  129. 129.
    Yamamoto S, Kinoshita H, Hashimoto H, Nishina Y (2014) Nanoscale 6:6501–6505PubMedGoogle Scholar
  130. 130.
    Rao CNR, Sood AK (2013) Graphene: synthesis, properties, and phenomena. Wiley, WeinheimGoogle Scholar
  131. 131.
    Lerf A, He H, Forster M, Klinowski J (1998) J Phys Chem B 102:4477–4482Google Scholar
  132. 132.
    Su C, Loh KP (2013) Acc Chem Res 46:2275–2285PubMedGoogle Scholar
  133. 133.
    Dimiev AM, Alemany LB, Tour JM (2013) ACS Nano 7:576–588PubMedGoogle Scholar
  134. 134.
    Dreyer DR, Jia HP, Bielawski CW (2010) Angew Chem Int Ed 49:6813–6816Google Scholar
  135. 135.
    Bhaskar G, Tanuja B, Yong-Chien L (2016) Curr Org Chem 20:1547–1566Google Scholar
  136. 136.
    Tran TPN, Thakur A, Trinh DX, Dao ATN, Taniike T (2018) Appl Catal A 549:60–67Google Scholar
  137. 137.
    Cetinkaya Y, Metin O, Balci M (2016) RSC Adv 6:28538–28542Google Scholar
  138. 138.
    Kumari S, Shekhar A, Mungse H, Khatri OP, Pathak DD (2014) RSC Adv 4:41690–41695Google Scholar
  139. 139.
    Zu S, Han B (2009) J Phys Chem C 113:13651–13657Google Scholar
  140. 140.
    Namvari M, Biswas CS, Galluzzi M, Wang Q, Du B, Stadler FJ (2017) Sci Rep 7:44508.  https://doi.org/10.1038/srep44058 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Yuhan B, Bao C, Song L, Hong N, Liew KM, Hu Y (2014) Chem Eng J 237:411–420Google Scholar
  142. 142.
    Song F-Z, Zhu Q-L, Tsumori N, Xu Q (2015) ACS Catal 5:5141–5144Google Scholar
  143. 143.
    Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Chem Rev 115:2483–2531PubMedPubMedCentralGoogle Scholar
  144. 144.
    Yang HF, Shan CS, Li FH, Han DX, Zhang QX, Niu L (2009) Chem Commun 0:3880–3882Google Scholar
  145. 145.
    Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) Angew Chem Int Ed 48:4785–4787Google Scholar
  146. 146.
    Garg B, Bisht T, Ling Y-C (2014) Molecules 19:14582–14614PubMedPubMedCentralGoogle Scholar
  147. 147.
    Du Y, Dong N, Zhang M, Zhu K, Ruigi N, Zhang S (2017) Phys Chem Chem Phys 19:2252–2260PubMedGoogle Scholar
  148. 148.
    Jang J, Pham VH, Rajagopalan B, Hur SH, Chung JS (2014) Nanoscale Res Lett 9:265.  https://doi.org/10.1186/1556-276X-9-265 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Chinnappan A, Appiah-Ntiamoah R, Chung W-J, Kim H (2016) Int J Hydrog Energy 41:14491–14497Google Scholar
  150. 150.
    Fu L, Lai G, Yu A (2015) RSC Adv 5:76973–76978Google Scholar
  151. 151.
    Huang P, Jing L, Zhu H, Gao X (2012) Acc Chem Res 46:43–52PubMedGoogle Scholar
  152. 152.
    Eigler S, Dimiev AM (2016) In: Dimiev AM, Eigler S (eds) Graphene oxide: fundamentals and applications. Wiley, New YorkGoogle Scholar
  153. 153.
  154. 154.
    Li S, Peng Z, Han X, Leblanc RM (2015) In: Wang C, Leblanc RM (eds) Recent progress in colloid and surface chemistry with biological applications, ACS symposium. American Chemical Society, WashingtonGoogle Scholar
  155. 155.
    Liu JB, Fu SH, Yuan B, Li YL, Deng ZX (2010) J Am Chem Soc 132:7279–7281PubMedGoogle Scholar
  156. 156.
    Shen JF, Shi M, Yan B, Ma HW, Li N, Hu YZ, Ye MX (2010) Colloids Surf B 81:434–438Google Scholar
  157. 157.
    Liu Y, Yu DS, Zeng C, Miao ZC, Dai LM (2010) Langmuir 26:6158–6160PubMedGoogle Scholar
  158. 158.
    Kang XH, Wang J, Wu H, Aksay IA, Liu J, Lin YH (2009) Biosens Bioelectron 25:901–905PubMedGoogle Scholar
  159. 159.
    Tjoa V, Jun W, Dravid V, Mhasiaklkar S, Mathews N (2011) J Mater Chem 21:15593Google Scholar
  160. 160.
    Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Nano Energy 1:107–131Google Scholar
  161. 161.
    Kou R, Shao YY, Wang DH, Engelhard MH, Kwak JH, Wang J et al (2009) J Electrochem Commun 11:954–957Google Scholar
  162. 162.
    Wang DH, Kou R, Choi D, Yang ZG, Nie ZM, Li J (2010) ACS Nano 4:1587–1595PubMedGoogle Scholar
  163. 163.
    Lu T, Zhang YP, Li HB, Pan LK, Li YL, Sun Z (2010) Electrochim Acta 55:4170–4173Google Scholar
  164. 164.
    He FA, Fan JT, Ma D, Zhang LM, Lang C, Chan HL (2010) Carbon 48:3139–3144Google Scholar
  165. 165.
    Ismaili H, Geng D, Sun AX, Kantzas TT, Workentin MS (2011) Langmuir 27:13261–13268PubMedGoogle Scholar
  166. 166.
    Shukla P, Mahata S, Sahu A, Singh M, Rai VK, Rai A (2017) RSC Adv 7:48723–48729Google Scholar
  167. 167.
    Singh M, Bhardiya SR, Kashyap H, Verma F, Rai VK, Tiwari I (2016) RSC Adv 6:104868–104874Google Scholar
  168. 168.
    Lv G, Wang H, Yang Y, Deng TS, Chen C, Zhu YL, Hou X (2016) Direct synthesis of 2,5-diformyfuran from fructose with graphene oxide as bifunctional and metal-free catalyst. Green Chem.  https://doi.org/10.1039/C5GC02794B CrossRefGoogle Scholar
  169. 169.
    Halliday GA, Robert J, Young J, Grushin VV (2003) Org Lett 5:2003–2005PubMedGoogle Scholar
  170. 170.
    Takagaki A, Takahashi M, Nishimura S, Ebitani K (2011) ACS Catal 1:1562–1565Google Scholar
  171. 171.
    Yang Z-Z, Deng J, Pan T, Guo Q-X, Fu Y (2012) Green Chem 14:2986–2989Google Scholar
  172. 172.
    Liu R, Chen J, Chen L, Guo Y, Zhong J (2014) ChemPlusChem 79:1448–1454Google Scholar
  173. 173.
    Liu Y, Zhu L, Tang J, Liu M, Cheng R, Hu C (2014) Chemsuschem 7:3541–3547PubMedGoogle Scholar
  174. 174.
    Ghezali W, De Oliveira Vigier K, Kessas R, Jerome F (2015) Green Chem 17:4459–4464Google Scholar
  175. 175.
    Chen J, Guo Y, Chen J, Song L, Chen L (2014) ChemCatChem 6:3174–3177Google Scholar
  176. 176.
    Su C, Acik M, Takai K, Lu J, Hao SJ, Zheng Y, Wu P et al (2012) Nat Commun 3:1298.  https://doi.org/10.1038/ncomms2315 CrossRefPubMedGoogle Scholar
  177. 177.
    Lv G, Wang H, Yang Y, Deng T, Chen C, Zhu Y, Hou X (2015) ACS Catal 5:5636–5646Google Scholar
  178. 178.
    Liu B, Zhang Z, Lv K, Deng K, Duan H (2014) Appl Catal A 472:64–71Google Scholar
  179. 179.
    Wang L, Ambrosi A, Pumera M (2013) Angew Chem Int Ed 52:13818.  https://doi.org/10.1002/anie.201301590 CrossRefGoogle Scholar
  180. 180.
    Favaretto L, An J, Sambo M, De Nisi A, Bettini C, Melucci M, Kovtun A, Liscio A, Palermo V, Bottoni A, Zerbetto F, Calvaresi M, Bandini M (2018) Org Lett 20:3705–3709PubMedGoogle Scholar
  181. 181.
    Calvaresi M, Zerbetto M (2013) Acc Chem Res 46:2454–2463PubMedGoogle Scholar
  182. 182.
    Allahresani A, Nasseri MA, Akbari A, Nasab BZ (2015) Reac Kinet Mech Cat 116:249–259Google Scholar
  183. 183.
    Patel GM, Deota PT (2013) Heterocycl Commun 19:421–424Google Scholar
  184. 184.
    Karimi AR, Dalirnasab Z, Yousefi GH, Akbarizadeh A (2015) Res Chem Intermed.  https://doi.org/10.1007/s11164-015-2007-4 CrossRefGoogle Scholar
  185. 185.
    Subba Reddy BV, Rajeswari N, Sarangapani M, Prashanthi Y, Ganji RJ, Addlagatta A (2012) Bioorg Med Chem Lett 22:2460–2463PubMedGoogle Scholar
  186. 186.
    Rad-Moghadam K, Gholizadeh S (2014) Iran J Catal 4:41–47Google Scholar
  187. 187.
    Nasseri MA, Ahrari F, Zakerinasab B (2015) RSC Adv 5:26517–26520Google Scholar
  188. 188.
    Azizian J, Mohammadi AA, Karimi N, Mohammadizadeh MR, Karimi AR (2006) Catal Commun 7:752–755Google Scholar
  189. 189.
    Zakeri M, Abouzari-lotf E, Miyake M, Mehdipour-Ataei S, Shameli K (2017) Phosphoric acid functionalized graphene oxide: a highly dispersible carbon-based nanocatalyst for the green synthesis of bio-active pyrazoles. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.11.006 CrossRefGoogle Scholar
  190. 190.
    Kumari S, Shekhar A, Pathak DD (2016) New J Chem 40:5053–5060Google Scholar
  191. 191.
    Keshavarz M, Ahmady AZ, Luigi Vaccaro L, Kardani M (2018) Non-covalent supported of l-proline on graphene oxide/Fe3O4 nanocomposite: a novel, highly efficient and superparamagnetically separable catalyst for the synthesis of bis-pyrazole derivatives. Molecules.  https://doi.org/10.3390/molecules23020330 CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Keshavarz M, Vafaei-Nezhad M (2016) Catal Lett 146:353–363Google Scholar
  193. 193.
    Maleki B, Eshghi H, Barghamadi M, Nasiri N, Khojastehnezhad A, Ashrafi SS, Pourshiani O (2016) Res ChemIntermed 42:3071–3093Google Scholar
  194. 194.
    Sadeghi B, Ghorbani Rad M (2014) Iran J Catal 4:67–70Google Scholar
  195. 195.
    Moosavi-Zare AR, Zolfigol MA, Zarei M, Zare A, Khakyzadeh V, Hasaninejad A (2013) Appl Catal A Gen 467:61–68Google Scholar
  196. 196.
    Phatangare KR, Padalkar VS, Gupta VD, Patil VS, Umape PG, Sekar N (2012) Synth Commun 42:1349–1358Google Scholar
  197. 197.
    Sobhani S, Hasaninejad A-R, Maleki MF, Parizi ZP (2012) Synth Commun 42:2245–2255Google Scholar
  198. 198.
    Hasaninejad A, Shekouhy M, Zare A, Ghattali SH, Golzar N (2011) J Iran Chem Soc 8:411–423Google Scholar
  199. 199.
    Gouda MA, Abu-Hashem AA (2012) Green Chem Lett Rev 5:203–209Google Scholar
  200. 200.
    Khazaei A, Zolfigol MA, Moosavi-zare AR, Asgari Z, Shekouhy M, Zare A, Hasaninejad A (2012) RSC Adv 2:8010–8013Google Scholar
  201. 201.
    Fattahi AH, Yaghoubi A, Mehdipoor F, Dekamin MG (2016) The one-pot three component synthesis of imidazole derivatives by using of 1,3,5-tris (2-hydroxyethyl) isocyanurate-functionalized graphene oxide as a novel and efficient nanocatalysts. MDPI AG.  https://doi.org/10.3390/ecsoc-20-a009 CrossRefGoogle Scholar
  202. 202.
    Ghafuri H, Talebi M (2016) Ind Eng Chem Res 55:2970–2982Google Scholar
  203. 203.
    Cui Y, Cheng QY, Wu H, Wei Z, Han BH (2013) Nanoscale 5:8367–8374PubMedGoogle Scholar
  204. 204.
    Liao R, Tang Z, Lin T, Guo B (2013) ACS Appl Mater Interfaces 5:2174–2181PubMedGoogle Scholar
  205. 205.
    Hanoon HD, Kowsari E, Abdouss M, Ghasemi MH, Zandi H (2017) Res Chem Intermed 43:4023–4041Google Scholar
  206. 206.
    Ahmad Y, Disa E, Dubois M, Gurin K, Dubois V, Zhang W, Bonnet P, Masin F, Vidal L, Ivanov DA, Hamwi A (2012) Carbon 50:3897–3908Google Scholar
  207. 207.
    Maio A, Giallombardo D, Scaffaro R, Piccionellob AP, Pibiri I (2016) RSC Adv 6:46037–46047Google Scholar
  208. 208.
    Campbell MG, Ritter T (2015) Chem Rev 115:612–633PubMedGoogle Scholar
  209. 209.
    Maleki A, Paydar R (2015) RSC Adv 5:33177–33184Google Scholar
  210. 210.
    Safari J, Khalili SD, Banitaba SH (2010) J Chem Sci 122:437–441Google Scholar
  211. 211.
    Safari J, Khalili SD, Rezaei M, Banitaba SH, Meshkani F (2010) Montash Chem 141:1339–1345Google Scholar
  212. 212.
    Zheng H, Shi QY, Du K, Mei YJ, Zhang PF (2013) Catal Lett 143:118–121Google Scholar
  213. 213.
    Maleki B, Ashrafi SS (2014) J Mex Chem Soc 58:76–81Google Scholar
  214. 214.
    Wang R, Liu C, Luo G (2010) Green Chem Lett Rev 3:101–104Google Scholar
  215. 215.
    Li Z, Zhao H, Han H, Song J, Liu Y, Guo W, Sun Z, Chu W (2018) A one-pot method for synthesis of reduced graphene oxide-supported Cu–Cu2O and catalytic application in tandem reaction of halides and sodium azide with terminal alkynes. Appl Organomet Chem.  https://doi.org/10.1002/aoc.4301 CrossRefGoogle Scholar
  216. 216.
    Gupta A, Jamatia R, Patil RA, Ma Y-R, Pal AK (2018) ACS Omega 3:7288–7299Google Scholar
  217. 217.
    Naeimi H, Shaabani R (2017) Ultrason Sonochem 34:246–254PubMedGoogle Scholar
  218. 218.
    Naeimi H, Ansarian Z (2017) Functionalized polytriazoles on graphene oxide-supported copper (I) complex as an effective reusable catalyst for sonochemical click synthesis of triazoles in aqueous media. Inorganica Chim Acta.  https://doi.org/10.1016/j.ica.2017.06.057 CrossRefGoogle Scholar
  219. 219.
    Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV (2009) Angew Chem 121:8162–8165Google Scholar
  220. 220.
    Reddy VH, Reddy YVR, Sridhar B, Reddy BVS (2016) Adv Synth Catal 358:1088–1092Google Scholar
  221. 221.
    Salam N, Sinha A, Roy AS, Mondal P, Jana NR, Islam SM (2014) RSC Adv 4:10001–10012Google Scholar
  222. 222.
    Li J, Liu C, Liu Y (2012) J Mater Chem 22:8426–8430Google Scholar
  223. 223.
    McNulty J, Keskar KL (2012) Eur J Org Chem 2012:5462–5470Google Scholar
  224. 224.
    Gao M, He C, Chen H, Bai R, Cheng B, Lei A (2013) Angew Chem 125:7096–7099Google Scholar
  225. 225.
    Silvestri IP, Andemarian F, Khairallah GN, Yap SW, Quach T et al (2011) Org Biomol Chem 9:6082–6088Google Scholar
  226. 226.
    Xiong X, Chen H, Tang Z, Jiang Y (2014) RSC Adv 4:9830–9837Google Scholar
  227. 227.
    Xiong XQ, Cai L (2013) Catal Sci Technol 3:1301–1307Google Scholar
  228. 228.
    Rad MNS, Behrouz S, Dehchenari VS, Hoseini SJ (2017) J Heterocyclic Chem 54:355–365Google Scholar
  229. 229.
    Amantini D, Beleggia R, Fringuelli F, Pizzo F, Vaccaro L (2004) J Org Chem 69:2896–2898PubMedGoogle Scholar
  230. 230.
    Nasrollahzadeh M, Bayat Y, Habibi D, Moshaee S (2009) Tetrahedron Lett 50:4435–4438Google Scholar
  231. 231.
    Kantam ML, Kumar KBS, Sridhar C (2005) Adv Synth Catal 347:1212–1214Google Scholar
  232. 232.
    Kantam ML, Kumar KBS, Raja KP (2006) J Mol Catal A Chem 247:186–188Google Scholar
  233. 233.
    Jin T, Kitahara F, Kamijo S, Yamamoto Y (2008) Tetrahedron Lett 49:2824–2827Google Scholar
  234. 234.
    Das B, Reddy CR, Kumar ND, Krishnaiah M, Narender R (2010) Synlett 3:391–394Google Scholar
  235. 235.
    Nasrollahzadeh M, Jaleh B, Jabbari A (2014) RSC Adv 4:36713–36720Google Scholar
  236. 236.
    Brahmayya M, Dai SA, Suen S-Y (2017) Sulfonated reduced graphene oxide catalyzed cyclization of hydrazides and carbon dioxide to 1,3,4-oxadiazoles under sonication. Sci Rep.  https://doi.org/10.1038/s41598-017-04143-4 CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Shaabani A, Hezarkhani Z, Nejad MK (2017) J Mater Sci 52:96–112Google Scholar
  238. 238.
    Rostamizadeh S, Hemmasi A, Zekri N (2017) Nanochem Res 2:29–41Google Scholar
  239. 239.
    Rostamizadeh S, Shadjou N, Hasanzadeh M (2012) J Chin Chem Soc 59:866–871Google Scholar
  240. 240.
    Rostamizadeh S, Kassaee MZ, Shadjou N, Zandi H (2012) Monatsh Chemie 144:703–706Google Scholar
  241. 241.
    Narayanan DP, Gopalakrishnan A, Yaakob Z, Sugunan S, Narayanan BN (2017) A facile synthesis of clay- graphene oxide nanocomposite catalysts for solvent free multicomponent Biginelli reaction. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.04.011 CrossRefGoogle Scholar
  242. 242.
    Joseph JK, Jain SL, Sain B (2006) J Mol Catal A Chem 247:99–102Google Scholar
  243. 243.
    Zhang H, Zhou Z, Yao Z, Xu F, Shen Q (2009) Tetrahedron Lett 50:1622–1624Google Scholar
  244. 244.
    Debache A, Amimour M, Belfaitah A, Rhouati S, Carboni B (2008) Tetrahedron Lett 49:6119–6121Google Scholar
  245. 245.
    Zumpe FL, Fluß M, Schmitz K, Lender A (2007) Tetrahedron Lett 48:1421–1423Google Scholar
  246. 246.
    Chen WY, Qin SD, Jin JR (2007) Synth Commun 37:47–52Google Scholar
  247. 247.
    Moghaddas M, Davoodnia A, Heravi MM, Tavakoli-Hoseini N (2012) Chin J Catal 33:706–710Google Scholar
  248. 248.
    Bigdeli MA, Gholami G, Sheikhhosseini E (2011) Chin Chem Lett 22:903–906Google Scholar
  249. 249.
    Moitra D, Ghosh BK, Chandel M, Ghosh NN (2016) Synthesis of BiFeO3 nanowire- reduced graphene oxide-based magnetically separable nanocatalyst and its versatile catalytic activity towards multiple organic reactions. RSC Adv.  https://doi.org/10.1039/C6RA22077K CrossRefGoogle Scholar
  250. 250.
    Akocak S, Sen B, Lolak N, Savk A, Koca M, Kuzu S, Sen F (2017) Nano Struct Nano Objects 11:25–31Google Scholar
  251. 251.
    Kundu SK, Mondal J, Bhaumik A (2013) Dalton Trans 42:10515–10524PubMedGoogle Scholar
  252. 252.
    Ren YF, Yang B, Liao XL (2016) Catal Sci Technol 6:4283–4293Google Scholar
  253. 253.
    Safari J, Zarnegar Z (2014) J Mol Struct 1072:53–60Google Scholar
  254. 254.
    Eshghi H, Damavandi S, Zohuri GH (2011) Synth React Inorg Met 41:1067–1073Google Scholar
  255. 255.
    Ghorbani M, Noura S, Oftadeh M, Zolfigol MA, Soleimani MH, Behbodi K (2015) J Mol Liq 212:291–300Google Scholar
  256. 256.
    Kumar D, Reddy VB, Mishra BG, Rana RK, Nadagouda MN, Varma RS (2007) Tetrahedron 63:3093–3097Google Scholar
  257. 257.
    Sen B, Lolak N, Paralı O, Koca M, Savk A, Akocak S, Sen F (2017) Nano Struct Nano Objects 12:33–40Google Scholar
  258. 258.
    Azarifar D, Abbasabadi MK (2018) Fe3O4-supported N-pyridin-4-amine-grafted graphene oxide as efficient and magnetically separable novel nanocatalyst for green synthesis of 4H-chromenes and dihydropyrano[2,3-c]pyrazole derivatives in water. Res Chem Intermed.  https://doi.org/10.1007/s11164-018-3597-4 CrossRefGoogle Scholar
  259. 259.
    Khodabakhshi S, Karami B (2014) New J Chem 38:3586–3590Google Scholar
  260. 260.
    Karami B, Eskandari K, Khodabakhshi S (2012) ARKIVOC 9:76–84Google Scholar
  261. 261.
    Karami B, Eskandari K, Khodabakhshi S, Hoseini SJ, Hashemian F (2013) RSC Adv 3:23335–23342Google Scholar
  262. 262.
    Karami B, Khodabakhshi S, Eskandari K (2013) Synlett 2013:998–1000Google Scholar
  263. 263.
    Karami B, Farahi M, Khodabakhshi S (2012) Helv Chim Acta 95:455–460Google Scholar
  264. 264.
    Karami B, Khodabakhshi S, Hashemi F (2013) Tetrahedron Lett 54:3583–3585Google Scholar
  265. 265.
    Siddiqui TAJ, Ghule BG, Shaikh S, Shinde PV, Gunturu KC, Zubaidha PK, Yun JM, O’Dwyer C, Mane RS, Kim KH (2018) RSC Adv 8:17373–17379Google Scholar
  266. 266.
    Ghosh PP, Pal G, Paul S, Das AR (2012) Green Chem 14:2691–2698Google Scholar
  267. 267.
    Jadhav SA, Shioorkar MG, Chavan OS, Pardeshi RK (2016) Eur J Pharm Med Res 3:233–238Google Scholar
  268. 268.
    Bodhak C, Hazra S, Pramanik A (2018) Chem Select 3:7707–7712Google Scholar
  269. 269.
    Abdi M, Rostamizadeh S, Zekri N (2017) An efficient and green synthesis of 1′H spiro[isoindoline-1,2′-quinazoline]-3,4′(3′H)-dione derivatives in the presence of nano Fe3O4–GO–SO3H. Polycycl Aromat Compd.  https://doi.org/10.1080/10406638.2017.1340313 CrossRefGoogle Scholar
  270. 270.
    Mohammadi AA, Dabiri M, Qaraat H (2009) Tetrahedron 65:3804–3808Google Scholar
  271. 271.
    Mane MM, Pore DM (2016) J Chem Sci 128:657–662Google Scholar
  272. 272.
    Roy B, Ghosh S, Ghosh P, Basu B (2015) Tetrahedron Lett 56:6762–6767Google Scholar
  273. 273.
    Xie F, Zhang M, Jiang H, Chen M, Lv W, Zheng A, Jian X (2015) Green Chem 17:279–284Google Scholar
  274. 274.
    Nguyen TB, Retailleau P, Al-Mourabit A (2013) Org Lett 15:5238–5241PubMedGoogle Scholar
  275. 275.
    Go A, Lee C, Kim J, Bae S, Lee BM, Kim BH (2014) Tetrahedron 71:1215–1226Google Scholar
  276. 276.
    Kausar N, Roy I, Chattopadhyay D, Das AR (2016) RSC Adv 6:22320–22330Google Scholar
  277. 277.
    Rahman M, Ling I, Abdullah N, Hashim R, Hajra A (2015) RSC Adv 5:7755–7760Google Scholar
  278. 278.
    Hajjami M, Tahmasbi B (2015) RSC Adv 5:59194–59203Google Scholar
  279. 279.
    Choghamarani AG, Azadi G (2015) RSC Adv 5:9752–9758Google Scholar
  280. 280.
    Chen J, Su W, Wu H, Liub M, Jin C (2007) Green Chem 9:972–975Google Scholar
  281. 281.
    Labade VB, Shinde PV, Shingare MS (2013) Tetrahedron Lett 54:5778–5780Google Scholar
  282. 282.
    Shitre PV, Harale RR, Sathe BR, Shingare MS (2017) Res Chem Intermed 43:829–841Google Scholar
  283. 283.
    Das B, Venkateswarlu K, Suneel K, Majhi A (2007) Tetrahedron Lett 48:5371–5374Google Scholar
  284. 284.
    Wadavrao SB, Ghogare RS, Venkat Narsaiah A (2013) Org Commun 6:23–30Google Scholar
  285. 285.
    Brahmachari G, Laskar S, Barik P (2013) RSC Adv 3:14245–14253Google Scholar
  286. 286.
    Kadam HK, Khan S, Kunkalkar RA, Tilve SG (2013) Tetrahedron Lett 54:1003–1007Google Scholar
  287. 287.
    Madhav B, Murthy SN, Reddy VP, Rao KR, Nageswar YVD (2009) Tetrahedron Lett 50:6025–6028Google Scholar
  288. 288.
    Shomali A, Valizadeh H, Banan A, Mohammad-Rezaei R (2015) Efficient synthesis of Xanthene derivatives using carboxyl functionalized graphene quantum dots as an acidic nano-catalyst under microwave irradiation. RSC Adv.  https://doi.org/10.1039/C5RA19645K CrossRefGoogle Scholar
  289. 289.
    Sajjadifar S, Fadaeian M, Bakhtiyari M, Rezayati S (2014) Chem Sci Trans 3:107–116Google Scholar
  290. 290.
    Mondal J, Nandi M, Modak A, Bhaumik A (2012) J Mol Catal A Chem 363–364:254–264Google Scholar
  291. 291.
    Mohammed NNG, Pandharpatte MS (2011) Der Pharma Chemica 3:65–71Google Scholar
  292. 292.
    Kiasat AR, Mouradzadegun A, Saghanezhad SJ (2013) J Serb Chem Soc 78:1291–1299Google Scholar
  293. 293.
    Dutta AK, Gogoi P, Borah R (2014) RSC Adv 4:41287–41291Google Scholar
  294. 294.
    Kundu K, Nayak SK (2014) J Serb Chem Soc 79:1051–1058Google Scholar
  295. 295.
    Chaudhary GR, Bansal P, Kaur N, Mehta SK (2014) RSC Adv 4:49462–49470Google Scholar
  296. 296.
    Bansal P, Chaudhary GR, Kaur N, Mehta SK (2014) RSC Adv 5:8205–8209Google Scholar
  297. 297.
    Kumar A, Rout L, Achary LSK, Dhaka RS, Dash P (2017) Greener route for synthesis of aryl and alkyl-14H-dibenzo [a.j] xanthenes using graphene oxide-copper ferrite nanocomposite as a recyclable heterogeneous catalyst. Sci Rep.  https://doi.org/10.1038/srep42975 CrossRefPubMedPubMedCentralGoogle Scholar
  298. 298.
    Rajitha B, Kumar BS, Reddy YT, Reddy PN, Sreenivasulu N (2005) Tetrahedron Lett 46:8691–8693Google Scholar
  299. 299.
    Eshghi H, Bakavoli M, Moradi H (2008) Chin Chem Lett 19:1423–1426Google Scholar
  300. 300.
    Verma KG, Raghuvanshi K, Verma RK, Dwivedi P, Singh MS (2011) Tetrahedron Lett 67:3698–3704Google Scholar
  301. 301.
    Rama V, Kanagaraj K, Pitchumani K (2012) Tetrahedron Lett 53:1018–1024Google Scholar
  302. 302.
    Dhakshinamoorthy A, Alvaro M, Concepcion P, Fornes V, Garcia H (2012) Chem Commun 48:5443–5445Google Scholar
  303. 303.
    Kijenski J, Baiker A (1989) Catal Today 5:1–120Google Scholar
  304. 304.
    Shaabani A, Hezarkhani Z, Nejad MK (2016) RSC Adv 6:30247–30257Google Scholar
  305. 305.
    Sathishkumar S, Kavitha HP (2017) Indian J Chem 56B:732–739Google Scholar
  306. 306.
    Mofakham H, Shaabani A, Mousavifaraz S, Hajishaabanha F, Shaabani S, Ng SW (2012) Mol Divers 16:351–356PubMedGoogle Scholar
  307. 307.
    Kausar N, Mukherjee P, Das AR (2016) RSC Adv 6:88904–88910Google Scholar
  308. 308.
    Shoeb M, Mobin M, Ali A, Zaman S, Naqvi AH (2017) Graphene-mesoporous anatase TiO2 nanocomposite: a highly efficient and recyclable heterogeneous catalyst for one-pot multicomponent synthesis of benzodiazepine derivatives. Appl Organomet Chem.  https://doi.org/10.1002/aoc.3961 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Microwave Synthesis Laboratory, Department of Chemistry, University College of ScienceMohanlal Sukhadia UniversityUdaipurIndia
  2. 2.Department of ChemistryJ. R. N. Rajasthan Vidyapeeth UniversityUdaipurIndia

Personalised recommendations