Topics in Current Chemistry

, 377:6 | Cite as

A Low-Cost, Well-Designed Catalytic System Derived from Household Waste “Egg Shell”: Applications in Organic Transformations

  • Manashjyoti Konwar
  • Mitali Chetia
  • Diganta SarmaEmail author


A waste feedstock-derived economical basic alternative catalyst is described in this review. Eggshell is one of the household wastes created in tons of weight daily. Therefore, in order to reduce the environmental pollution-related problems, its use in heterogeneous catalysis can be attributed as a great contribution for the chemical and material science society to carry out several known reactions and for the much-needed energy alternative biodiesel production as low-cost catalytic system. Keeping green chemistry in mind, industrial use of these catalysts may also reduce the use of other traditionally used high-cost chemical catalytic systems.


Egg shell powder Heterogeneous catalysis Green chemistry Transesterification Waste-derived catalyst 



MK is thankful to UGC, New Delhi for UGC-BSR fellowship. D.S. is thankful to DST, New Delhi, India, for a research grant (no. EMR/2016/002345). The authors acknowledge the Department of Science and Technology for financial assistance under DST-FIST program and UGC, New Delhi for Special Assistance Programme (UGC-SAP) to the Department of Chemistry, Dibrugarh University.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.


  1. 1.
    Mollersten K, Yan J, Westermark M (2003) Energy 28:691–710Google Scholar
  2. 2.
    Roy I, Gupta MN (2005) Enzyme Microb Technol 36:896–899Google Scholar
  3. 3.
    Sugihara T, Yamada M, Ban H, Yamaguchi M, Kaneko C (1997) Angew Chem Int Ed Engl 36:2801–2804Google Scholar
  4. 4.
    Evans MG, Polany M (1936) Trans Faraday Soc 32:1333–1360Google Scholar
  5. 5.
    Hepburn C (1992) Reaction rates, catalysis and surfactants. Elsevier Science Publishers Ltd, Amsterdam, pp 107–121Google Scholar
  6. 6.
    Mizuno N, Misono M (1998) Chem Rev 98:199–217PubMedGoogle Scholar
  7. 7.
    Rodriguez-Reinoso F (1998) Carbon 36:159–175Google Scholar
  8. 8.
    Hincke MT, Nys Y, Gautron J, Mann K, Rodriguez-Navarro AB, McKee MD (2012) Front Biosci 17:1266–1280Google Scholar
  9. 9.
    Patil S, Jadhav SD, Shinde SK (2012) Org Chem Int. CrossRefGoogle Scholar
  10. 10.
    Tan YH, Abdullah MO, Nolasco-Hipolito C, Taufiq-Yap YH (2015) Appl Energy 160:58–70Google Scholar
  11. 11.
    Sabbe MK, Reyniers MF, Reuter K (2012) Catal Sci Technol 2:2010–2024Google Scholar
  12. 12.
    Sheldon RA, Dakka J (1994) Catal Today 19:15–246Google Scholar
  13. 13.
    Irfan M, Glasnov TN, Kappe CO (2011) Chemsuschem 4:300–316PubMedGoogle Scholar
  14. 14.
    Hartman RL, McMullen JP, Jensen KF (2011) Angew Chem Int Ed 50:7502–7519Google Scholar
  15. 15.
    Fache F, Schulz E, Tommasino ML, Lemaire M (2000) Chem Rev 100:2159–2232PubMedGoogle Scholar
  16. 16.
    Ziolek M (2004) Catal Today 90:145–150Google Scholar
  17. 17.
    Corma A, Garcia H (2003) Chem Rev 103:4307–4365PubMedGoogle Scholar
  18. 18.
    Paggiola G, Hunt AJ, McElroy CR, Sherwood J, Clark JH (2014) Green Chem 16:2107–2110Google Scholar
  19. 19.
    Mohan D, Pittman CU Jr, Steele PH (2006) Energy Fuels 20:848–889Google Scholar
  20. 20.
    Li Z, Smith KH, Stevens GW (2016) Chin J Chem Eng 24:215–220Google Scholar
  21. 21.
    Kokel A, Schafer C, Torok B (2017) Green Chem 19:3729–3751Google Scholar
  22. 22.
    Kim JH, Kim JW, Shokouhimehr M, Lee YS (2005) J Org Chem 70:6714–6720PubMedGoogle Scholar
  23. 23.
    Hagiwara H, Shimizu Y, Hoshi T, Suzuki T, Ando M, Ohkubo K, Yokoyama C (2001) Tetrahedron Lett 42:4349–4351Google Scholar
  24. 24.
    Chaminand J, Djakovitch L, Gallezot P, Marion P, Pinel C, Rosier C (2004) Green Chem 6:359–361Google Scholar
  25. 25.
    Das B, Thirupathi P, Mahender I, Reddy VS, Rao YK (2006) J Mol Catal A Chem 247:233–239Google Scholar
  26. 26.
    Rezayati S, Erfani Z, Hajinasiri R (2015) Chem Pap 69:536–543Google Scholar
  27. 27.
    Chtchigrovsky M, Primo A, Gonzalez P, Molvinger K, Robitzer M, Quignard F, Taran F (2009) Angew Chem 121:6030–6034Google Scholar
  28. 28.
    Baig RBN, Varma RS (2013) Green Chem 15:1839–1843Google Scholar
  29. 29.
    Lipshutz BH, Taft BR (2006) Angew Chem 118:8415–8418Google Scholar
  30. 30.
    Hudson R, Li CJ, Moores A (2012) Green Chem 14:622–624Google Scholar
  31. 31.
    Hirasawa T, Omi N, Ezawa I (2001) J Bone Miner Metab 19:84–88PubMedGoogle Scholar
  32. 32.
    Ganesh V, Sudhir VS, Kundu T, Chandrasekaran S (2011) Chem Asian J 6:2670–2694PubMedGoogle Scholar
  33. 33.
    Brun LR, Lupo M, Delorenzi DA, Di Loreto VE, Rigalli A (2013) Int J Food Sci Nutr 64:740–743PubMedGoogle Scholar
  34. 34.
    Scheideler SE (1998) J Appl Poult Res 7:69–74Google Scholar
  35. 35.
    Rao TR (1996) Chem Eng Technol 19:373–377Google Scholar
  36. 36.
    Halikia I, Zoumpoulakis L, Christodoulou E, Prattis D (2001) Eur J Miner Process Environ Prot 1:89–102Google Scholar
  37. 37.
    Mohamed M, Yusup S, Maitra S (2012) J Eng Sci Technol 7:1–10Google Scholar
  38. 38.
    Galan I, Glasser FP, Andrade C (2013) J Therm Anal Calorim 111:1197–1202Google Scholar
  39. 39.
    Rodriguez-Navarro C, Ruiz- Agudo E, Luque A, Rodriguez-Navarro AB, Ortega-Huertas M (2009) Am Mineral 94:578–593Google Scholar
  40. 40.
    Konwar M, Boruah PR, Saikia PJ, Khupse ND, Sarma D (2017) ChemistrySelect 2:4983–4987Google Scholar
  41. 41.
    Navalon S, Alvaro M, Garcia H (2010) Appl Catal B 99:1–26Google Scholar
  42. 42.
    Climent MJ, Corma A, Iborra S (2012) RSC Adv 2:16–58Google Scholar
  43. 43.
    Laszlo P (1987) Science 235:1473–1477PubMedGoogle Scholar
  44. 44.
    Laszlo P (1986) Acc Chem Res 19:121–127Google Scholar
  45. 45.
    Varma RS, Dahiya R, Kumar S (1997) Tetrahedron Lett 38:2039–2042Google Scholar
  46. 46.
    Chalais S, Cornelis A, Gerstmans A, Kolodziejski W, Laszlo P, Mathy A, Metra P (1985) Helv Chim Acta 68:1196–1203Google Scholar
  47. 47.
    Nierop KGJ, van Bergen PF (2002) J Anal Appl Pyrolysis 63:197–208Google Scholar
  48. 48.
    Roudier JF, Foucaud A (1984) Tetrahedron Lett 25:4315–4318Google Scholar
  49. 49.
    Rittles JA, Chaudhuri AK, Besson SW (1964) J Polym Sci Part A Polym Chem 2:1221–1231Google Scholar
  50. 50.
    Garrido-Ramírez EG, Theng BKG, Mora ML (2010) Appl Clay Sci 47:182–192Google Scholar
  51. 51.
    Vaccari A (1999) Appl Clay Sci 14:161–198Google Scholar
  52. 52.
    Shaikh NS, Deshpande VH, Bedekar AV (2001) Tetrahedron 57:9045–9048Google Scholar
  53. 53.
    Varma RS (2002) Tetrahedron 58:1235–1255Google Scholar
  54. 54.
    Varma RS, Pitchumani K, Naicker KP (1999) Green Chem 1:95–97Google Scholar
  55. 55.
    Varma RS (1999) Green Chem 1:43–55Google Scholar
  56. 56.
    Jeganathan M, Dhakshinamoorthy A, Pitchumani K (2014) ACS Sustain Chem Eng 2:781–787Google Scholar
  57. 57.
    Jeganathana M, Pitchumani K (2014) RSC Adv 4:38491–38497Google Scholar
  58. 58.
    Nasrollahzadeh M, Bayat Y, Habibi D, Moshae S (2009) Tetrahedron Lett 50:4435–4438Google Scholar
  59. 59.
    Bigdeli MA, Nemati F, Mahdavinia GH (2007) Tetrahedron Lett 48:6801–6804Google Scholar
  60. 60.
    Chakraborti AK, Gulhane R (2003) Chem Commun 15:1896–1897Google Scholar
  61. 61.
    Bigdeli MA, Heravi MM, Mahdavini GH (2007) J Mol Catal A Chem 275:25–29Google Scholar
  62. 62.
    Zhou J, Li Y, Sun HB, Tang Z, Qi L, Liu L, Ai Y, Li S, Shao Z, Liang Q (2017) Green Chem 19:3400–3407Google Scholar
  63. 63.
    Kaur M, Sharma S, Bedi PMS (2015) Chin J Catal 36:520–549Google Scholar
  64. 64.
    Wang B, Hu J, Zhang F, Zheng H (2016) Heterocycles 92:103–113Google Scholar
  65. 65.
    Ghodrati K, Farrokhi A, Karami C, Hamidi Z (2015) Synth React Inorg M 45:15–20Google Scholar
  66. 66.
    Dintzner MR, Little AJ, Pacilli M, Pileggi DJ, Osner ZR, Lyons TW (2007) Tetrahedron Lett 48:1577–1579Google Scholar
  67. 67.
    Avalos M, Babiano R, Bravo JL, Cintas P, Jimenez JL, Palacios JC (1998) Tetrahedron Lett 39:9301–9304Google Scholar
  68. 68.
    Soriente A, Arienzo R, Rosa MD, Palombi L, Spinella A, Scettri A (1999) Green Chem 1:157–162Google Scholar
  69. 69.
    Borah BJ, Borah SJ, Saikia K, Dutta DK (2014) Appl Catal A 469:350–356Google Scholar
  70. 70.
    Gajare AS, Shaikh NS, Jnaneshwara GK, Deshpande VH, Ravindranathan T, Bedekar AV (2000) J Chem Soc Perkin Trans 1:999–1001Google Scholar
  71. 71.
    Gajare AS, Shaikh NS, Bonde BK, Deshpande VH (2000) J Chem Soc Perkin Trans 1:639–640Google Scholar
  72. 72.
    Saikia PK, Sarmah PP, Borah BJ, Saikia L, Dutta DK (2016) J Mol Catal A Chem 412:27–33Google Scholar
  73. 73.
    Phukan A, Borah SJ, Bordoloi P, Sharma K, Borah BJ, Sarmah PP, Dutta DK (2017) Adv Powder Technol 28:1585–1592Google Scholar
  74. 74.
    Choudhary VR, Dumbre DK, Patil SK (2012) RSC Adv 2:7061–7065Google Scholar
  75. 75.
    Deville JP, Behar V (2001) J Org Chem 66:4097–4098PubMedGoogle Scholar
  76. 76.
    Bahulayan D, Das SK, Iqbal J (2003) J Org Chem 68:5735–5738PubMedGoogle Scholar
  77. 77.
    Marvi O, Fekri LZ, Takhti M (2014) Russ J Gen Chem 84:1837–1840Google Scholar
  78. 78.
    Shanmugam P, Rajasingh P (2002) Chem Lett 31:1212–1213Google Scholar
  79. 79.
    Yadav JS, Reddy BVS, Eeshwaraiah B, Srinivas M (2004) Tetrahedron 60:1767–1771Google Scholar
  80. 80.
    Yadav JS, Reddy BVS, Kumar GM, Murthy CVSR (2001) Tetrahedron Lett 42:89–91Google Scholar
  81. 81.
    Yadav JS, Reddy BVS, Sadasiv K, Reddy PSR (2002) Tetrahedron Lett 43:3853–3856Google Scholar
  82. 82.
    Dintzner MR, Morse KM, McClelland KM, Coligado DM (2004) Tetrahedron Lett 45:79–81Google Scholar
  83. 83.
    Yadav JS, Reddy BVS, Satheesh G (2004) Tetrahedron Lett 45:3673–3676Google Scholar
  84. 84.
    Meshram HM, Sekhar KC, Ganesh YSS, Yadav JS (2000) Synlett 9:1273–1274Google Scholar
  85. 85.
    Babu M, Pitchumani K, Ramesh P (2013) Helv Chim Acta 96:1269–1272Google Scholar
  86. 86.
    Bizaia N, de Faria EH, Ricci GP, Calefi PS, Nassar EJ, Castro KADF, Nakagaki S, Ciuffi KJ, Trujillano R, Vicente MA, Gil A, Korili SA (2009) ACS Appl Mater Interfaces 1:2667–2678PubMedGoogle Scholar
  87. 87.
    Bandgar BP, Kasture SP (2000) Green Chem 2:154–156Google Scholar
  88. 88.
    Yadav JS, Reddy BVS, Madan C (2001) Synlett 7:1131–1133Google Scholar
  89. 89.
    Feng J, Hu X, Yue PL (2004) Environ Sci Technol 38:269–275PubMedGoogle Scholar
  90. 90.
    Yip AC, Lam FL, Hu X (2005) Ind Eng Chem Res 44:7983–7990Google Scholar
  91. 91.
    Nasrollahzadeh M, Habibi D, Shahkarami Z, Bayat Y (2009) Tetrahedron 65:10715–10719Google Scholar
  92. 92.
    Smith K, Almeer S, Black SJ (2000) Chem Commun 17:1571–1572Google Scholar
  93. 93.
    Davis ME (1998) Microporous Mesoporous Mater 21:173–182Google Scholar
  94. 94.
    Cejka J, Centi G, Pariente JP, Roth WJ (2012) Catal Today 179:2–15Google Scholar
  95. 95.
    Tajbakhsh M, Heidary M, Hosseinzadeh R (2016) Res Chem Intermed 42:1425–1439Google Scholar
  96. 96.
    Teimouri A, Chermahini AN (2011) Polyhedron 30:2606–2610Google Scholar
  97. 97.
    Srivastava R, Srinivas D, Ratnasamy P (2005) Appl. Catal. A 289:128–134Google Scholar
  98. 98.
    Bokade VV, Yadav GD (2012) Ind Eng Chem Res 51:1209–1217Google Scholar
  99. 99.
    Tandiary MA, Masui Y, Onaka M (2015) RSC Adv 5:15736–15739Google Scholar
  100. 100.
    Soni VK, Sharma RK (2016) ChemCatChem 8:1763–1768Google Scholar
  101. 101.
    Mirsafaei R, Delzendeh S, Abdolazimi A (2016) Int J Environ Sci Technol 13:2219–2226Google Scholar
  102. 102.
    Alkordi MH, Liu Y, Larsen RW, Eubank JF, Eddaoudi M (2008) J Am Chem Soc 130:12639–12641PubMedGoogle Scholar
  103. 103.
    Dhakshinamoorthy A, Asiric AM, Garcia H (2015) Chem Soc Rev 44:1922–1947PubMedGoogle Scholar
  104. 104.
    Wu CD, Hu A, Zhang L, Lin W (2005) J Am Chem Soc 127:8940–8941PubMedGoogle Scholar
  105. 105.
    Gao S, Zhao N, Shu M, Che S (2010) Appl Catal A 388:196–201Google Scholar
  106. 106.
    Li Z, Meng F, Zhang J, Xie J, Dai B (2016) Org Biomol Chem 14:10861–10865PubMedGoogle Scholar
  107. 107.
    Krajewska B (2004) Enzyme Microb Technol 35:126–139Google Scholar
  108. 108.
    Hardy JJE, Hubert S, Macquarrie DJ, Wilson AJ (2004) Green Chem 6:53–56Google Scholar
  109. 109.
    Ahmed N, Siddiqui ZN (2015) ACS Sustain Chem Eng 3:1701–1707Google Scholar
  110. 110.
    Guibal E (2005) Prog Polym Sci 30:71–109Google Scholar
  111. 111.
    Leonhardt SES, Stolle A, Ondruschka B, Cravotto G, De Leo C, Jandt KD, Keller TF (2010) Appl Catal A 379:30–37Google Scholar
  112. 112.
    Khalil KD, Al-Matar HM (2013) Molecules 2013(18):5288–5305Google Scholar
  113. 113.
    Murugadoss A, Chattopadhyay A (2008) Nanotechnology 19(015603):1–9. CrossRefGoogle Scholar
  114. 114.
    Qin Y, Zhao W, Yang L, Zhang X, Cui Y (2012) Chirality 24:640–645PubMedGoogle Scholar
  115. 115.
    Khan FA, Dash J, Satapathy R, Upadhyay SK (2004) Tetrahedron Lett 45:3055–3058Google Scholar
  116. 116.
    Zhu H, Zhou M, Zeng Z, Xiao G, Xiao R (2014) Korean J Chem Eng 31:593–597Google Scholar
  117. 117.
    Ramirez JP, Kapteijn F, Moulijn JA (1999) Catal Lett 60:133–138Google Scholar
  118. 118.
    Ramani A, Chanda BM, Velu S, Sivasanker S (1999) Green Chem 1:163–165Google Scholar
  119. 119.
    Choudary BM, Kantam ML, Reddy CV, Rao KK, Figueras F (1999) Green Chem 1:187–189Google Scholar
  120. 120.
    Nishimura T, Kakiuchi N, Inoue M, Uemura S (2000) Chem Commun 14:1245–1246Google Scholar
  121. 121.
    Abello S, Medina F, Tichit D, Perez-Ramirez J, Cesteros Y, Salagrea P, Sueiras JE (2005) Chem Commun 11:1453–1455Google Scholar
  122. 122.
    Debecker DP, Gaigneaux EM, Busca G (2009) Chem Eur J 15:3920–3935PubMedGoogle Scholar
  123. 123.
    Ebitani K, Motokura K, Mizugaki T, Kaneda K (2005) Angew Chem 117:3489–3492Google Scholar
  124. 124.
    Sels BF, De Vos DE, Jacobs PA (2001) Cat Rev Sci Eng 43:443–488Google Scholar
  125. 125.
    Zhoua H, Zhuob GL, Jiang XZ (2006) J Mol Catal A Chem 248:26–31Google Scholar
  126. 126.
    Kantam ML, Kumar KBS, Raja KP (2006) J Mol Catal A Chem 247:186–188Google Scholar
  127. 127.
    Gao L, Teng G, Xiao G, Wei R (2010) Biomass Bioenergy 34:1283–1288Google Scholar
  128. 128.
    Enache DI, Edwards JK, Landon P, Espriu BS, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362–365PubMedGoogle Scholar
  129. 129.
    McTiernan CD, Leblanc X, Scaiano JC (2017) ACS Catal 7:2171–2175Google Scholar
  130. 130.
    Bujdak J, Rode BM (1997) J Mol Evol 45:457–466Google Scholar
  131. 131.
    Bujdak J, Rode BM (1999) Origins Life Evol Biosphere 290:451–461Google Scholar
  132. 132.
    Ernst JB, Muratsugu S, Wang F, Tada M, Glorius F (2016) J Am Chem Soc 138:10718–10721PubMedGoogle Scholar
  133. 133.
    Gniewek A, Ziolkowski JJ, Trzeciak AM, Zawadzki M, Grabowska H, Wrzyszcz J (2008) J Catal 254:121–130Google Scholar
  134. 134.
    Pocostales P, Alvarez P, Beltran FJ (2011) Chem Eng J 168:1289–1295Google Scholar
  135. 135.
    Kumbhar A, Jadhav S, Kamble S, Rashinkar G, Salunkhe R (2013) Tetrahedron Lett 54:1331–1337Google Scholar
  136. 136.
    Jamwal N, Sodhi RK, Gupta P, Paul S (2011) Int J Biol Macromol 49:930–935PubMedGoogle Scholar
  137. 137.
    Wanga X, Hua P, Xuea F, Wei Y (2014) Carbohydr Polym 114:476–483Google Scholar
  138. 138.
    Reddy KR, Kumar NS, Reddy PS, Sreedhar B, Kantam ML (2006) J Mol Catal A Chem 252:12–16Google Scholar
  139. 139.
    Azambre B, Heintz O, Krzton A, Zawadzki J, Weber JV (2000) J Anal Appl Pyrolysis 55:105–117Google Scholar
  140. 140.
    Shaabani A, Maleki A (2007) Appl Catal A 331:149–151Google Scholar
  141. 141.
    Shaabani A, Rahmati A, Badri Z (2008) Catal Commun 9:13–16Google Scholar
  142. 142.
    Lipshutz BH, Tasler S, Chrisman W, Spliethoff B, Tesche B (2003) J Org Chem 68:1177–1189PubMedGoogle Scholar
  143. 143.
    Lipshutz BH, Taft BR (2006) Angew Chem 118:8415–8418Google Scholar
  144. 144.
    Lipshutz BH, Nihan DM, Vinogradova E, Taft BR, Boskovic ZV (2008) Org Lett 10:4279–4282PubMedPubMedCentralGoogle Scholar
  145. 145.
    Maegawa T, Fujiwara Y, Inagaki Y, Esaki H, Monguchi Y, Sajiki H (2008) Angew Chem 120:5474–5477Google Scholar
  146. 146.
    Sharghi H, Khalifeh R, Doroodmand MM (2009) Adv Synth Catal 351:207–218Google Scholar
  147. 147.
    Garcia-Suarez EJ, Tristany M, Garcia AB, Colliere V, Philippot K (2012) Microporous Mesoporous Mater 153:155–162Google Scholar
  148. 148.
    Liao M, Hu Q, Zheng J, Li Y, Zhou H, Zhong CJ, Chen BH (2013) Electrochim Acta 111:504–509Google Scholar
  149. 149.
    Patil NM, Bhanage BM (2015) Catal Today 247:182–189Google Scholar
  150. 150.
    Tang W, Li J, Jin X, Sun J, Huang J, Li R (2014) Catal Commun 43:75–78Google Scholar
  151. 151.
    Wang MS, Pinnavaia TJ (1994) Chem Mater 6:468–474Google Scholar
  152. 152.
    Razmi H, Abdollahi V, Mohammad-Rezaei R (2016) Environ Chem Lett 14:521–526Google Scholar
  153. 153.
    Ganga VSR, Choudhary MK, Tak R, Kumari P, Abdi SHR, Kureshy RI, Khan NH (2017) Catal Commun 94:5–8Google Scholar
  154. 154.
    He J, Li B, Chen F, Xu Z, Yin G (2009) J Mol Catal A Chem 304:135–138Google Scholar
  155. 155.
    Kumar P, Pandey RK (2000) Green Chem 2:29–32Google Scholar
  156. 156.
    Dapurkar SE, Sakthivel A, Selvam P (2003) New J Chem 27:1184–1190Google Scholar
  157. 157.
    Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G (2004) Angew Chem 116:1421–1423Google Scholar
  158. 158.
    Mehnert CP, Weaver DW, Ying JY (1998) J Am Chem Soc 120:12289–12296Google Scholar
  159. 159.
    Son YC, Makwana VD, Howell AR, Suib SL (2001) Angew Chem 113:4410–4413Google Scholar
  160. 160.
    Santoro S, Kozhushkov SI, Ackermann L, Vaccaro L (2016) Green Chem 18:3471–3493Google Scholar
  161. 161.
    Yin L, Liebscher J (2007) Chem Rev 107:133–173PubMedGoogle Scholar
  162. 162.
    Chetia M, Ali AA, Bhuyan D, Saikia L, Sarma D (2015) New J Chem 39:5902–5907Google Scholar
  163. 163.
    Chetia M, Ali AA, Bordoloi A, Sarma D (2017) J Chem Sci 129:1211–1217Google Scholar
  164. 164.
    Boro J, Deka D, Thakur AJ (2012) Renew Sustain Energy Rev 16:904–910Google Scholar
  165. 165.
    Buasri A, Chaiyut N, Loryuenyong V, Wongweang C, Khamsrisuk S (2013) Sustain Energy 1:7–13Google Scholar
  166. 166.
    Wei Z, Xu C, Li B (2009) Bioresour Technol 100:2883–2885PubMedGoogle Scholar
  167. 167.
    Cho YB, Seo G (2010) Bioresour Technol 101:8515–8519PubMedGoogle Scholar
  168. 168.
    Jazie AA, Pramanik H, Sinha ASK (2012) Egg Shell Waste-Catalyzed Transesterification of Mustard Oil: Optimization Using Response Surface Methodology (RSM), 2012 2nd International conference on power and energy systems (ICPES 2012) 56,
  169. 169.
    Chakraborty R, Bepari S, Banerjee A (2010) Chem Eng J 165:798–805Google Scholar
  170. 170.
    Niju S, Meera KM, Begum S, Anantharaman N (2014) RSC Adv 4:54109–54114Google Scholar
  171. 171.
    Patil S, Jadhav SD, Deshmukh MB (2013) J Chem Sci 125:851–857Google Scholar
  172. 172.
    Khazaei A, Khazaei M, Nasrollahzadeh M (2017) Tetrahedron 73:5624–5633Google Scholar
  173. 173.
    Waghadhare SS, Naravane VM, Pathare SV (2014) Novel egg shell based magnetically separable nano catalyst for Knoevenagel condensation reaction, Vidnyan Sanshodhan Puraskar Contest, Marathi Vidnyan ParishadGoogle Scholar
  174. 174.
    Morbale ST, Shinde SS, Jadhav SD, Deshmukh MB, Patil SS (2015) Der Pharmacia Lettre 7:169–182Google Scholar
  175. 175.
    Riadi Y, Slimani R, Haboub A, Antri SE, Safi M, Lazar S (2013) Mor J Chem 1:24–28Google Scholar
  176. 176.
    Taleb MA, Mamouni R, Benomar MA, Bakka A, Mouna A, Taha ML, Benlhachemi A, Bakiz B, Villain S (2017) J Environ Chem Eng 5:1341–1348Google Scholar
  177. 177.
    Gao Y, Xu C (2012) Catal Today 190:107–111Google Scholar
  178. 178.
    Khazaei M, Khazaei A, Nasrollahzadeh M, Tahsili MR (2017) Tetrahedron 73:5613–5623Google Scholar
  179. 179.
    Montilla A, del Castillo MD, Sanz ML, Olano A (2005) Food Chem 90:883–890Google Scholar
  180. 180.
    Youseftabar-Miri L, Akbari F, Ghraghsahar F (2014) Iran J Catal 4:85–89Google Scholar
  181. 181.
    Mallampati R, Valiyaveettil S (2014) ACS Sustain Chem Eng 2:855–859Google Scholar
  182. 182.
    Konwar M, Ali AA, Sarma D (2016) Tetrahedron Lett 57:2283–2285Google Scholar
  183. 183.
    Konwar M, Ali AA, Chetia M, Saikia PJ, Khupse ND, Sarma D (2016) ChemistrySelect 1:6016–6019Google Scholar
  184. 184.
    Kuhn M, Lucas M, Claus P (2015) Ind Eng Chem Res 54:6683–6691Google Scholar
  185. 185.
    Shao Z, Li C, Chen X, Pang M, Wang X, Liang C (2010) ChemCatChem 2:1555–1558Google Scholar
  186. 186.
    Wen X, Li R, Yang Y, Chen J, Zhang F (2013) Appl Catal A 468:204–215Google Scholar
  187. 187.
    Badano JM, Betti C, Rintoul I, Berlanga JV, Cagnola E, Torres G, Vera C, Yori J, Quiroga M (2010) Appl Catal A 390:166–174Google Scholar
  188. 188.
    Khajavi H, Stil HA, Kuipers HPCE, Gascon J, Kapteijn F (2013) ACS Catal 3:2617–2626Google Scholar
  189. 189.
    Gao J, Zhu Q, Wen L, Chen J (2010) Particuology 8:251–256Google Scholar
  190. 190.
    Richter M, Trunschke A, Bentrup U, Brzezinka KW, Schreier E, Schneider M, Pohl MM, Fricke R (2002) J Catal 206:98–113Google Scholar
  191. 191.
    Silva H, Nielsen MG, Fiordaliso EM, Damsgaard CD, Gundlach C, Kasama T, Chorkendorff I, Chakraborty D (2015) Appl Catal A 505:548–556Google Scholar
  192. 192.
    Yang M, Sun Y, Xu AH, Lu XY, Du HZ, Sun CL, Li C (2007) Bull Environ Contam Toxicol 79:66–70PubMedGoogle Scholar
  193. 193.
    Khandelwal H, Prakash S (2016) J Miner Mater Charact Eng 4:119–126Google Scholar
  194. 194.
    Yin X, Duan X, You Q, Dai C, Tan Z, Zhu X (2016) Energy Convers Manage 112:199–207Google Scholar
  195. 195.
    Navajas A, Issariyakul T, Arzamendi G, Gandia LM, Dalai AK (2013) Asia-Pac J Chem Eng 6:7. CrossRefGoogle Scholar
  196. 196.
    Jazie AA, Pramanik H, Sinha ASK, Jazie AA (2013) Int J Sustain Dev Green Econ 2:2315–4721Google Scholar
  197. 197.
    Boro J, Konwar LJ, Deka D (2014) Fuel Process Technol 122:72–78Google Scholar
  198. 198.
    Chen G, Shan R, Shi J, Yan B (2014) Bioresour Technol 171:428–432PubMedGoogle Scholar
  199. 199.
    Viriya-empikul N, Krasae P, Puttasawat B, Yoosuk B, Chollacoop N, Faungnawakij K (2010) Bioresour Technol 101:3765–3767PubMedGoogle Scholar
  200. 200.
    Niju S, Begum KMMS, Anantharaman N (2014) RSC Adv 4:54109–54114Google Scholar
  201. 201.
    Niju S, Begum KMMS, Anantharaman N (2014) Environ Prog Sustain Energy 6:1–7. CrossRefGoogle Scholar
  202. 202.
    Niju S, Begum KMMS, Anantharaman N (2014) J Saudi Chem Soc 18:702–706Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manashjyoti Konwar
    • 1
  • Mitali Chetia
    • 1
  • Diganta Sarma
    • 1
    Email author
  1. 1.Department of ChemistryDibrugarh UniversityDibrugarhIndia

Personalised recommendations