Topics in Current Chemistry

, 377:4 | Cite as

Dispersive Single-Atom Metals Anchored on Functionalized Nanocarbons for Electrochemical Reactions

  • Jin-Cheng Li
  • Zidong Wei
  • Dong Liu
  • Dan Du
  • Yuehe Lin
  • Minhua ShaoEmail author
Part of the following topical collections:
  1. Electrocatalysis


The use of dispersive single-atom metals anchored on functionalized carbon nanomaterials as electrocatalysts for electrochemical energy conversion reactions represents a burgeoning area of research, due to their unique characteristics of low coordination number, uniform coordination environment, and maximum atomic utilization. Here we highlight the advanced synthetic methods, characterization techniques, and electrochemical applications for carbon-based single-atom metal catalysts, and provide illustrative correlations between molecular/electronic structures and specific catalytic activity for O2 reduction, water splitting, and other emerging reactions including CO2 reduction, H2O2 production, and N2 reduction. We also discuss fundamental principles for the future design of carbon-based single-atom metal catalysts for specific electrochemical reactions. In addition, we explore the challenges and opportunities that lie ahead in further work with carbon-based single-atom metal electrocatalysts.


Single-atom metal catalysts Oxygen reduction Water splitting Carbon dioxide reduction Nitrogen reduction 



This work was supported by the National Key R&D Program of China (No. 2017YFB0102900), the Research Grant Council (N_HKUST610/17) of the Hong Kong Special Administrative Region, Guangdong Special Fund for Science and Technology Development [Hong Kong Technology Cooperation Funding Scheme (201704030019 and 201704030065)].


  1. 1.
    Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998PubMedGoogle Scholar
  2. 2.
    Zhu YP, Guo C, Zheng Y, Qiao S-Z (2017) Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc Chem Res 50(4):915–923PubMedGoogle Scholar
  3. 3.
    Shao M, Chang Q, Dodelet J-P, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116(6):3594–3657PubMedGoogle Scholar
  4. 4.
    Zhu S, Jiang B, Cai W-B, Shao M (2017) Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J Am Chem Soc 139(44):15664–15667PubMedGoogle Scholar
  5. 5.
    Yao Y, Zhu S, Wang H, Li H, Shao M (2018) A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J Am Chem Soc 140(4):1496–1501PubMedGoogle Scholar
  6. 6.
    Liu K-H, Zhong H-X, Li S-J, Duan Y-X, Shi M-M, Zhang X-B, Yan J-M, Jiang Q (2018) Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Prog Mater Sci 92:64–111Google Scholar
  7. 7.
    Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, Liao L, Wu T, Lin D, Liu Y, Jaramillo TF, Nørskov JK, Cui Y (2018) High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat Catal 1(2):156–162Google Scholar
  8. 8.
    Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46(8):1740–1748PubMedGoogle Scholar
  9. 9.
    Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981PubMedGoogle Scholar
  10. 10.
    Zhang H, Liu G, Shi L, Ye J (2018) Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater 8(1):1701343Google Scholar
  11. 11.
    Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634PubMedGoogle Scholar
  12. 12.
    Chen Y, Kasama T, Huang Z, Hu P, Chen J, Liu X, Tang X (2015) Highly dense isolated metal atom catalytic sites: dynamic formation and in situ observations. Chem Eur J 21(48):17397–17402PubMedGoogle Scholar
  13. 13.
    Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X (2015) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci 8(5):1594–1601Google Scholar
  14. 14.
    Yang S, Kim J, Tak YJ, Soon A, Lee H (2016) Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed 55(6):2058–2062Google Scholar
  15. 15.
    Zhang B, Asakura H, Zhang J, Zhang J, De S, Yan N (2016) Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew Chem Int Ed 55(29):8319–8323Google Scholar
  16. 16.
    Wang X, He T, Chen S, Ni B, Gong Y, Wu Z, Song L, Gu L, Hu W (2018) Zirconium-porphyrin based metal-organic framework hollow nanotubes for immobilization of noble metal single atoms. Angew Chem Int Ed 57(13):3493–3498Google Scholar
  17. 17.
    Bulushev DA, Zacharska M, Lisitsyn AS, Podyacheva OY, Hage FS, Ramasse QM, Bangert U, Bulusheva LG (2016) Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal 6(6):3442–3451Google Scholar
  18. 18.
    Bulushev DA, Zacharska M, Shlyakhova EV, Chuvilin AL, Guo Y, Beloshapkin S, Okotrub AV, Bulusheva LG (2016) Single isolated Pd2+ cations supported on N-doped carbon as active sites for hydrogen production from formic acid decomposition. ACS Catal 6(2):681–691Google Scholar
  19. 19.
    Qiu HJ, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M (2015) Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed 54(47):14031–14035Google Scholar
  20. 20.
    Li J-C, Zhao S-Y, Hou P-X, Fang R-P, Liu C, Liang J, Luan J, Shan X-Y, Cheng H-M (2015) A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction. Nanoscale 7(45):19201–19206PubMedGoogle Scholar
  21. 21.
    Choi CH, Kim M, Kwon HC, Cho SJ, Yun S, Kim H-T, Mayrhofer KJJ, Kim H, Choi M (2016) Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun 7:10922PubMedPubMedCentralGoogle Scholar
  22. 22.
    Li J-C, Hou P-X, Zhao S-Y, Liu C, Tang D-M, Cheng M, Zhang F, Cheng H-M (2016) A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions. Energy Environ Sci 9(10):3079–3084Google Scholar
  23. 23.
    Li J-C, Hou P-X, Liu C (2017) Heteroatom-doped carbon nanotube and graphene-based electrocatalysts for oxygen reduction reaction. Small 13(45):1702002Google Scholar
  24. 24.
    Wang J, Zhang H, Wang C, Zhang Y, Wang J, Zhao H, Cheng M, Li A, Wang J (2018) Co-synthesis of atomic Fe and few-layer graphene towards superior ORR electrocatalyst. Energy Storage Mater 12:1–7Google Scholar
  25. 25.
    Deng D, Chen X, Yu L, Wu X, Liu Q, Liu Y, Yang H, Tian H, Hu Y, Du P, Si R, Wang J, Cui X, Li H, Xiao J, Xu T, Deng J, Yang F, Duchesne PN, Zhang P, Zhou J, Sun L, Li J, Pan X, Bao X (2015) A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv 1(11):e1500462PubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang C, Sha J, Fei H, Liu M, Yazdi S, Zhang J, Zhong Q, Zou X, Zhao N, Yu H, Jiang Z, Ringe E, Yakobson BI, Dong J, Chen D, Tour JM (2017) Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 11(7):6930–6941PubMedGoogle Scholar
  27. 27.
    Li J-C, Tang D-M, Hou P-X, Li G-X, Cheng M, Liu C, Cheng H-M (2018) The effect of carbon support on the oxygen reduction activity and durability of single-atom iron catalysts. MRS Commun 8(3):1158–1166Google Scholar
  28. 28.
    Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland AI, Duan X, Huang Y (2018) General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat Catal 1(1):63–72Google Scholar
  29. 29.
    Fei H, Dong J, Arellano-Jiménez MJ, Ye G, Dong Kim N, Samuel ELG, Peng Z, Zhu Z, Qin F, Bao J, Yacaman MJ, Ajayan PM, Chen D, Tour JM (2015) Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 6:8668PubMedPubMedCentralGoogle Scholar
  30. 30.
    Pan F, Zhang H, Liu K, Cullen D, More K, Wang M, Feng Z, Wang G, Wu G, Li Y (2018) Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal 8:3116–3122Google Scholar
  31. 31.
    Zhang X, Guo J, Guan P, Liu C, Huang H, Xue F, Dong X, Pennycook SJ, Chisholm MF (2013) Catalytically active single-atom niobium in graphitic layers. Nat Commun 4:1924PubMedGoogle Scholar
  32. 32.
    Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis MN, Li R, Ye S, Knights S, Botton GA, Sham T-K, Sun X (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep 3:1775PubMedCentralGoogle Scholar
  33. 33.
    Cheng N, Sun X (2017) Single atom catalyst by atomic layer deposition technique. Chin J Catal 38(9):1508–1514Google Scholar
  34. 34.
    Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham T-K, Liu L-M, Botton GA, Sun X (2016) Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 7:13638PubMedPubMedCentralGoogle Scholar
  35. 35.
    Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C, Li J, Wei S, Lu J (2015) Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc 137(33):10484–10487PubMedGoogle Scholar
  36. 36.
    Lee E-K, Park S-A, Woo H, Hyun Park K, Kang DW, Lim H, Kim Y-T (2017) Platinum single atoms dispersed on carbon nanotubes as reusable catalyst for Suzuki coupling reaction. J Catal 352(4):388–393Google Scholar
  37. 37.
    Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y (2016) Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater 28(12):2427–2431PubMedGoogle Scholar
  38. 38.
    Yoshikawa S, Shimada A (2015) Reaction mechanism of cytochrome c oxidase. Chem Rev 115(4):1936–1989PubMedGoogle Scholar
  39. 39.
    Zhang W, Lai W, Cao R (2017) Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem Rev 117(4):3717–3797PubMedGoogle Scholar
  40. 40.
    Sa YJ, Park C, Jeong HY, Park S-H, Lee Z, Kim KT, Park G-G, Joo SH (2014) Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells. Angew Chem Int Ed 53(16):4102–4106Google Scholar
  41. 41.
    Gentil S, Lalaoui N, Dutta A, Nedellec Y, Cosnier S, Shaw WJ, Artero V, Le Goff A (2017) Carbon-nanotube-supported bio-inspired nickel catalyst and its integration in hybrid hydrogen/air fuel cells. Angew Chem Int Ed 56(7):1845–1849Google Scholar
  42. 42.
    Wang X, Wang B, Zhong J, Zhao F, Han N, Huang W, Zeng M, Fan J, Li Y (2016) Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: a high-performance electrocatalyst for oxygen reduction reaction. Nano Res 9(5):1497–1506Google Scholar
  43. 43.
    Cao R, Thapa R, Kim H, Xu X, Gyu Kim M, Li Q, Park N, Liu M, Cho J (2013) Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat Commun 4:2076PubMedGoogle Scholar
  44. 44.
    Hijazi I, Bourgeteau T, Cornut R, Morozan A, Filoramo A, Leroy J, Derycke V, Jousselme B, Campidelli S (2014) Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J Am Chem Soc 136(17):6348–6354PubMedGoogle Scholar
  45. 45.
    Wang J, Ge X, Liu Z, Thia L, Yan Y, Xiao W, Wang X (2017) Heterogeneous electrocatalyst with molecular cobalt ions serving as the center of active sites. J Am Chem Soc 139(5):1878–1884PubMedGoogle Scholar
  46. 46.
    Ding Y, Klyushin A, Huang X, Jones T, Teschner D, Girgsdies F, Rodenas T, Schlögl R, Heumann S (2018) Cobalt bridged with ionic liquid polymer on carbon nanotube for enhanced oxygen evolution reaction activity. Angew Chem Int Ed 57(13):3514–3518Google Scholar
  47. 47.
    Kwak D-H, Han S-B, Lee Y-W, Park H-S, Choi I-A, Ma K-B, Kim M-C, Kim S-J, Kim D-H, Sohn J-I, Park K-W (2017) Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Appl Catal B 203:889–898Google Scholar
  48. 48.
    Hu K, Tao L, Liu D, Huo J, Wang S (2016) Sulfur-doped Fe/N/C nanosheets as highly efficient electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces 8(30):19379–19385PubMedGoogle Scholar
  49. 49.
    Sa YJ, Seo D-J, Woo J, Lim JT, Cheon JY, Yang SY, Lee JM, Kang D, Shin TJ, Shin HS, Jeong HY, Kim CS, Kim MG, Kim T-Y, Joo SH (2016) A general approach to preferential formation of active Fe–Nx sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction. J Am Chem Soc 138(45):15046–15056PubMedGoogle Scholar
  50. 50.
    Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G (2017) Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc 139(40):14143–14149PubMedGoogle Scholar
  51. 51.
    Wang XX, Cullen DA, Pan Y-T, Hwang S, Wang M, Feng Z, Wang J, Engelhard MH, Zhang H, He Y, Shao Y, Su D, More KL, Spendelow JS, Wu G (2018) Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv Mater 30(11):1706758Google Scholar
  52. 52.
    Liu J, Jiao M, Lu L, Barkholtz HM, Li Y, Wang Y, Jiang L, Wu Z, D-j Liu, Zhuang L, Ma C, Zeng J, Zhang B, Su D, Song P, Xing W, Xu W, Wang Y, Jiang Z, Sun G (2017) High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat Commun 8:15938PubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang X, Chen W, Zhang L, Yao T, Liu W, Lin Y, Ju H, Dong J, Zheng L, Yan W, Zheng X, Li Z, Wang X, Yang J, He D, Wang Y, Deng Z, Wu Y, Li Y (2017) Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J Am Chem Soc 139(28):9419–9422PubMedGoogle Scholar
  54. 54.
    Liu Q, Liu X, Zheng L, Shui J (2018) The solid-phase synthesis of an Fe–N–C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew Chem Int Ed 57(5):1204–1208Google Scholar
  55. 55.
    Zheng Y, Jiao Y, Zhu Y, Cai Q, Vasileff A, Li LH, Han Y, Chen Y, Qiao S-Z (2017) Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J Am Chem Soc 139(9):3336–3339PubMedGoogle Scholar
  56. 56.
    Song P, Luo M, Liu X, Xing W, Xu W, Jiang Z, Gu L (2017) Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv Funct Mater 27(28):1700802Google Scholar
  57. 57.
    Wu H, Li H, Zhao X, Liu Q, Wang J, Xiao J, Xie S, Si R, Yang F, Miao S, Guo X, Wang G, Bao X (2016) Highly doped and exposed Cu(I)–N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ Sci 9(12):3736–3745Google Scholar
  58. 58.
    Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571PubMedGoogle Scholar
  59. 59.
    Leapman RD (2003) Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging. J Microsc 210(1):5–15PubMedGoogle Scholar
  60. 60.
    Lovejoy TC, Ramasse QM, Falke M, Kaeppel A, Terborg R, Zan R, Dellby N, Krivanek OL (2012) Single atom identification by energy dispersive X-ray spectroscopy. Appl Phys Lett 100(15):154101Google Scholar
  61. 61.
    Suenaga K, Iizumi Y, Okazaki T (2011) Single atom spectroscopy with reduced delocalization effect using a 30 kV-STEM. Eur Phys J Appl Phys 54(3):33508Google Scholar
  62. 62.
    Liu W, Zhang L, Liu X, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T (2017) Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J Am Chem Soc 139(31):10790–10798PubMedGoogle Scholar
  63. 63.
    Yin P, Yao T, Wu Y, Zheng L, Lin Y, Liu W, Ju H, Zhu J, Hong X, Deng Z, Zhou G, Wei S, Li Y (2016) Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Ed 55(36):10800–10805Google Scholar
  64. 64.
    Liang H-W, Wei W, Wu Z-S, Feng X, Müllen K (2013) Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J Am Chem Soc 135(43):16002–16005PubMedGoogle Scholar
  65. 65.
    Li J-C, Hou P-X, Shi C, Zhao S-Y, Tang D-M, Cheng M, Liu C, Cheng H-M (2016) Hierarchically porous Fe–N-doped carbon nanotubes as efficient electrocatalyst for oxygen reduction. Carbon 109:632–639Google Scholar
  66. 66.
    Ferrandon M, Kropf AJ, Myers DJ, Artyushkova K, Kramm U, Bogdanoff P, Wu G, Johnston CM, Zelenay P (2012) Multitechnique characterization of a polyaniline–iron–carbon oxygen reduction catalyst. J Phys Chem C 116(30):16001–16013Google Scholar
  67. 67.
    Zitolo A, Goellner V, Armel V, Sougrati M-T, Mineva T, Stievano L, Fonda E, Jaouen F (2015) Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater 14(9):937–942PubMedGoogle Scholar
  68. 68.
    Sahraie NR, Kramm UI, Steinberg J, Zhang Y, Thomas A, Reier T, Paraknowitsch J-P, Strasser P (2015) Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat Commun 6:8618PubMedPubMedCentralGoogle Scholar
  69. 69.
    Chai G-L, Qiu K, Qiao M, Titirici M-M, Shang C, Guo Z (2017) Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks. Energy Environ Sci 10(5):1186–1195Google Scholar
  70. 70.
    Pei Z, Li H, Huang Y, Xue Q, Huang Y, Zhu M, Wang Z, Zhi C (2017) Texturing in situ: N, S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy Environ Sci 10(3):742–749Google Scholar
  71. 71.
    Li J-C, Hou P-X, Cheng M, Liu C, Cheng H-M, Shao M (2018) Carbon nanotube encapsulated in nitrogen and phosphorus co-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. Carbon 139:156–163Google Scholar
  72. 72.
    Hu H, Han L, Yu M, Wang Z, Lou XW (2016) Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ Sci 9(1):107–111Google Scholar
  73. 73.
    Zhou T, Du Y, Yin S, Tian X, Yang H, Wang X, Liu B, Zheng H, Qiao S, Xu R (2016) Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy Environ Sci 9(8):2563–2570Google Scholar
  74. 74.
    Guan BY, Yu L, Lou XW (2016) A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy Environ Sci 9(10):3092–3096Google Scholar
  75. 75.
    Li J, Ghoshal S, Liang W, Sougrati M-T, Jaouen F, Halevi B, McKinney S, McCool G, Ma C, Yuan X, Ma Z-F, Mukerjee S, Jia Q (2016) Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ Sci 9(7):2418–2432Google Scholar
  76. 76.
    Higgins D, Zamani P, Yu A, Chen Z (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ Sci 9(2):357–390Google Scholar
  77. 77.
    Li J-C, Yang Z-Q, Tang D-M, Zhang L, Hou P-X, Zhao S-Y, Liu C, Cheng M, Li G-X, Zhang F, Cheng H-M (2018) N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. NPG Asia Mater 10:e461Google Scholar
  78. 78.
    Sarapuu A, Kibena-Poldsepp E, Borghei M, Tammeveski K (2018) Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal-nitrogen-carbon catalysts for alkaline membrane fuel cells. J Mater Chem A 6(3):776–804Google Scholar
  79. 79.
    Song J, Zhu C, Xu Bo Z, Fu S, Engelhard Mark H, Ye R, Du D, Beckman Scott P, Lin Y (2016) Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Adv Energy Mater 7(2):1601555Google Scholar
  80. 80.
    Wang Y, Xie C, Zhang Z, Liu D, Chen R, Wang S (2018) In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction. Adv Funct Mater 28(4):1703363Google Scholar
  81. 81.
    Anantharaj S, Ede SR, Karthick K, Sam Sankar S, Sangeetha K, Karthik PE, Kundu S (2018) Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ Sci 11(4):744–771Google Scholar
  82. 82.
    Wu Z-Y, Hu B-C, Wu P, Liang H-W, Yu Z-L, Lin Y, Zheng Y-R, Li Z, Yu S-H (2016) Mo2C nanoparticles embedded within bacterial cellulose-derived 3D N-doped carbon nanofiber networks for efficient hydrogen evolution. NPG Asia Mater 8:e288Google Scholar
  83. 83.
    Liu R, Zhang G, Cao H, Zhang S, Xie Y, Haider A, Kortz U, Chen B, Dalal NS, Zhao Y, Zhi L, Wu C-X, Yan L-K, Su Z, Keita B (2016) Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. Energy Environ Sci 9(3):1012–1023Google Scholar
  84. 84.
    Liu W, Cui Y, Du X, Zhang Z, Chao Z, Deng Y (2016) High efficiency hydrogen evolution from native biomass electrolysis. Energy Environ Sci 9(5):467–472Google Scholar
  85. 85.
    Shi Q, Zhu C, Du D, Wang J, Xia H, Engelhard MH, Feng S, Lin Y (2018) Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range. J Mater Chem A 6(19):8855–8859Google Scholar
  86. 86.
    Cui X, Ren P, Deng D, Deng J, Bao X (2016) Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ Sci 9(1):123–129Google Scholar
  87. 87.
    Detsi E, Cook JB, Lesel BK, Turner CL, Liang Y-L, Robbennolt S, Tolbert SH (2016) Mesoporous Ni60Fe30Mn10-alloy based metal/metal oxide composite thick films as highly active and robust oxygen evolution catalysts. Energy Environ Sci 9(2):540–549Google Scholar
  88. 88.
    Liang H-W, Bruller S, Dong R, Zhang J, Feng X, Mullen K (2015) Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat Commun 6:7992PubMedPubMedCentralGoogle Scholar
  89. 89.
    Dou S, Dong C-L, Hu Z, Huang Y-C, J-l Chen, Tao L, Yan D, Chen D, Shen S, Chou S, Wang S (2017) Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Adv Funct Mater 27(36):1702546Google Scholar
  90. 90.
    Back S, Lim J, Kim N-Y, Kim Y-H, Jung Y (2017) Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem Sci 8(2):1090–1096PubMedGoogle Scholar
  91. 91.
    Yang HB, Hung S-F, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang H-Y, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen HM, Li CM, Zhang T, Liu B (2018) Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy 3(2):140–147Google Scholar
  92. 92.
    Bi W, Li X, You R, Chen M, Yuan R, Huang W, Wu X, Chu W, Wu C, Xie Y (2018) Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv Mater 30(18):1706617Google Scholar
  93. 93.
    Pan F, Zhang H, Liu K, Cullen D, More K, Wang M, Feng Z, Wang G, Wu G, Li Y (2018) Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal 8(4):3116–3122Google Scholar
  94. 94.
    Wang X, Wang W, Qiao M, Wu G, Chen W, Yuan T, Xu Q, Chen M, Zhang Y, Wang X, Wang J, Ge J, Hong X, Li Y, Wu Y, Li Y (2018) Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci Bull 63(19):1246–1253Google Scholar
  95. 95.
    Mukherjee S, Cullen DA, Karakalos S, Liu K, Zhang H, Zhao S, Xu H, More KL, Wang G, Wu G (2018) Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 48:217–226Google Scholar
  96. 96.
    Zhang L, Jia Y, Gao G, Yan X, Chen N, Chen J, Soo MT, Wood B, Yang D, Du A, Yao X (2018) Graphene defects trap atomic ni species for hydrogen and oxygen evolution reactions. Chem 4(2):285–297Google Scholar
  97. 97.
    Chen P, Zhou T, Xing L, Xu K, Tong Y, Xie H, Zhang L, Yan W, Chu W, Wu C, Xie Y (2017) Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew Chem Int Ed 56(2):610–614Google Scholar
  98. 98.
    Wei P-J, Yu G-Q, Naruta Y, Liu J-G (2014) Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions. Angew Chem Int Ed 53(26):6659–6663Google Scholar
  99. 99.
    Pan Y, Lin R, Chen Y, Liu S, Zhu W, Cao X, Chen W, Wu K, Cheong W-C, Wang Y, Zheng L, Luo J, Lin Y, Liu Y, Liu C, Li J, Lu Q, Chen X, Wang D, Peng Q, Chen C, Li Y (2018) Design of single-atom Co–N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J Am Chem Soc 140(12):4218–4221PubMedGoogle Scholar
  100. 100.
    Fan L, Liu PF, Yan X, Gu L, Yang ZZ, Yang HG, Qiu S, Yao X (2016) Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat Commun 7:10667PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jin-Cheng Li
    • 1
    • 2
    • 3
  • Zidong Wei
    • 4
  • Dong Liu
    • 3
  • Dan Du
    • 3
  • Yuehe Lin
    • 3
  • Minhua Shao
    • 1
    • 2
    Email author
  1. 1.Fok Ying Tung Research InstituteHong Kong University of Science and TechnologyGuangzhouPeople’s Republic of China
  2. 2.Department of Chemical and Biological EngineeringHong Kong University of Science and TechnologyKowloonPeople’s Republic of China
  3. 3.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  4. 4.College of Chemistry and Chemical EngineeringChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations