Advertisement

Topics in Current Chemistry

, 376:46 | Cite as

Supported Catalysts for Continuous Flow Synthesis

  • Marco Colella
  • Claudia Carlucci
  • Renzo LuisiEmail author
Review
Part of the following topical collections:
  1. Accounts on Sustainable Flow Chemistry

Abstract

Flow chemistry and heterogenous catalysis hold incredible potential from a sustainability point of view and from a green perspective. In fact, if heterogenous catalysts are required by the chemical industry for their efficiency, on the other hand, heterogenous flow catalysis would allow performing greener and more efficient chemistry at an industrial level. In the context of sustainable flow chemistry, in this chapter we report and discuss selected examples recently published in the specialized literature on the use of supported organic and organometallic catalysts for continuous flow synthesis. The use in chemo- and stereoselective synthesis, as well as versatility and robustness of the newly developed supported catalysts are discussed.

Keywords

Flow chemistry Supported catalysts Catalysis Synthesis Stereoselectivity Continuous processing 

References

  1. 1.
    Yoshida J (2008) Fast organic synthesis in microsystems, flash chemistry. Wiley-Blackwell, OxfordGoogle Scholar
  2. 2.
    Luis SV, García-Verdugo E (2009) Chemical reactions and processes under flow conditions. RSC, CambridgeGoogle Scholar
  3. 3.
    Wiles C, Watts P (2011) Micro reaction technology in organic synthesis. CRC, Boca RatonGoogle Scholar
  4. 4.
    Wirth T (2013) Microreactors in organic chemistry and catalysis, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Jensen KF (2017) AIChE J 63:858Google Scholar
  6. 6.
    Yoshida J, Kim H, Nagaki A (2011) Chemsuschem 4:331PubMedGoogle Scholar
  7. 7.
    Hessel V, Kralisch D, Kockmann N (2015) Novel process windows: innovative gates to intensified and sustainable chemical processes. Wiley, OxfordGoogle Scholar
  8. 8.
    Newton S, Carter CF, Pearson CM, de Alves LC, Lange H, Thansandote P, Ley SV (2014) Angew Chem Int Ed 53:4915Google Scholar
  9. 9.
    Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) Chem Rev 117:11796PubMedGoogle Scholar
  10. 10.
    Gérardy R, Emmanuel N, Toupy T, Kassin VE, Tshibalonza NN, Schmitz M, Monbaliu JCM (2018) Eur J Org Chem 2018:2301Google Scholar
  11. 11.
    Fitzpatrick DE, Ley SV (2018) Tetrahedron 74:3087Google Scholar
  12. 12.
    Li J, Ballmer SG, Gillis EP, Fujii S, Schmidt MJ, Palazzolo AM, Lehmann JW, Morehouse GF, Burke MD (2015) Science 347:1221PubMedPubMedCentralGoogle Scholar
  13. 13.
    Fitzpatrick DE, Battilocchio C, Ley SV (2016) ACS Cent Sci 2:131PubMedPubMedCentralGoogle Scholar
  14. 14.
    Ley SV, Fitzpatrick DE, Ingham RJ, Myers RM (2015) Angew Chem Int Ed 54:3449Google Scholar
  15. 15.
    Fanelli F, Parisi G, Degennaro L, Luisi R (2017) Beilstein J Org Chem 13:520PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bligaard T, Norskov JK (2008) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam, pp 255–321Google Scholar
  17. 17.
    Sheldon RA, Downing RS (1999) Appl Catal A 189:163Google Scholar
  18. 18.
    Descorme C, Gallezot P, Geantet C, George C (2012) ChemCatChem 4:1897Google Scholar
  19. 19.
    Johansson Seechurn CC, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51:5062Google Scholar
  20. 20.
    Xu BB, Zhang YL, Wei S, Ding H, Sun HB (2013) ChemCatChem 5:2091Google Scholar
  21. 21.
    Tsubogo T, Oyamada H, Kobayashi S (2015) Nature 520:329PubMedGoogle Scholar
  22. 22.
    Munirathinam R, Huskens J, Verboom W (2015) Adv Synth Catal 357:1093Google Scholar
  23. 23.
    Masuda K, Ichitsuka T, Koumura N, Sato K, Kobayashi S (2018) Tetrahedron 74:1705Google Scholar
  24. 24.
    Atodiresei I, Vila C, Rueping M (2015) ACS Catal 5:1972Google Scholar
  25. 25.
    Rodríguez-Escrich C, Pericàs MA (2015) Eur J Org Chem 2015:1173Google Scholar
  26. 26.
    Tsubogo T, Ishiwata T, Kobayashi S (2013) Angew Chem Int Ed 52:6590Google Scholar
  27. 27.
    Noel T, Buchwald SL (2011) Chem Soc Rev 40:5010PubMedGoogle Scholar
  28. 28.
    Su Y, Straathof NJ, Hessel V, Noel T (2014) Chem Eur J 20:10562PubMedGoogle Scholar
  29. 29.
    Noël T, Su Y, Hessel V (2016) Top Organomet Chem 57:1Google Scholar
  30. 30.
    Zhao D, Ding K (2013) ACS Catal. 3:928Google Scholar
  31. 31.
    Sachse A, Galarneau A, Coq B, Fajula F (2011) New J Chem 35:259Google Scholar
  32. 32.
    List B (ed) (2009) Asymmetric Organocatalysis in Top Curr Chem, vol 291. Springer, BerlinGoogle Scholar
  33. 33.
    Hafez AM, Taggi AE, Wack H, Drury WJ, Lectka T (2000) Org Lett 2:3963PubMedGoogle Scholar
  34. 34.
    Alza E, Rodríguez-Escrich C, Sayalero S, Bastero A, Pericàs MA (2009) Chem Eur J 15:10167PubMedGoogle Scholar
  35. 35.
    Alza E, Sayalero S, Cambeiro XC, Martín-Rapún R, Miranda PO, Pericàs MA (2011) Synlett 4:464Google Scholar
  36. 36.
    Sagamanova I, Rodríguez-Escrich C, Gábor Molnár I, Sayalero S, Gilmour R, Pericàs MA (2015) ACS Cat 5:6241Google Scholar
  37. 37.
    Llanes P, Rodríguez-Escrich C, Sayalero S, Pericàs MA (2016) Org Lett 18:6292PubMedGoogle Scholar
  38. 38.
    Massi A, Cavazzini A, Del Zoppo L, Pandoli O, Costa V, Pasti L, Giovannini PP (2011) Tetrahedron Lett 52:619Google Scholar
  39. 39.
    Chiroli V, Benaglia M, Cozzi F, Puglisi A, Annunziata R (2013) Org Lett 15:3590PubMedGoogle Scholar
  40. 40.
    Porta R, Benaglia M, Puglisi A, Mandoli A, Gualandi A, Cozzi PG (2014) Chemsuschem 7:3534PubMedGoogle Scholar
  41. 41.
    Porta R, Benaglia M, Annunziata R, Puglisi A, Celentano G (2017) Adv Synth Catal 359:2375Google Scholar
  42. 42.
    Izquierdo J, Ayats C, Henseler AH, Pericàs MA (2015) Org Biomol Chem 13:4204PubMedGoogle Scholar
  43. 43.
    Porta R, Benaglia M, Coccia F, Cozzi F, Puglisi A (2015) Adv Synth Catal 357:377Google Scholar
  44. 44.
    Kasaplar P, Ozkal E, Rodríguez-Escrich C, Pericàs MA (2015) Green Chem 17:3122Google Scholar
  45. 45.
    Kasaplar P, Rodríguez-Escrich C, Pericàs MA (2013) Org Lett 15:3498PubMedGoogle Scholar
  46. 46.
    Osorio-Planes L, Rodríguez-Escrich C, Pericàs MA (2016) Catal Sci Technol 6:4686Google Scholar
  47. 47.
    Izquierdo J, Pericàs MA (2016) ACS Catal 6:348Google Scholar
  48. 48.
    Martín S, Porcar R, Peris E, Burguete MI, García-Verdugo E, Luis SV (2014) Green Chem 16:1639Google Scholar
  49. 49.
    Osorio-Planes L, Rodríguez-Escrich C, Pericàs MA (2014) Chem Eur J 20:2367PubMedGoogle Scholar
  50. 50.
    Hoffmann S, Seayad AM, List B (2005) Angew Chem Int Ed 44:7424Google Scholar
  51. 51.
    Clot-Almenara L, Rodríguez-Escrich C, Osorio-Planes L, Pericàs MA (2016) ACS Catal 6:7647Google Scholar
  52. 52.
    Ayats C, Henseler AH, Dibello E, Pericàs MA (2014) ACS Catal 4:3027Google Scholar
  53. 53.
    Canellas S, Ayats C, Henseler AH, Pericàs MA (2017) ACS Cat 7:1383Google Scholar
  54. 54.
    Ötvös SB, Mándity IM, Fülöp F (2012) Chemsuschem 5:266PubMedGoogle Scholar
  55. 55.
    Arakawa Y, Wennemers H (2013) Chemsuschem 6:242PubMedGoogle Scholar
  56. 56.
    Neyyappadath RM, Chisholm R, Greenhalgh MD, Rodríguez-Escrich C, Pericàs MA, Hähner G, Smith AD (2018) ACS Catal 8:1067Google Scholar
  57. 57.
    Kreituss I, Bode JW (2017) Nat Chem 9:446Google Scholar
  58. 58.
    Dehli JR, Gotor V (2002) Chem Soc Rev 31:365PubMedGoogle Scholar
  59. 59.
    Cantillo D, Kappe CO (2014) ChemCatChem 6:3286Google Scholar
  60. 60.
    Reynolds WR, Plucinski P, Frost CG (2014) Catal Sci Technol 4:948Google Scholar
  61. 61.
    Asadi M, Bonke S, Polyzos A, Lupton DW (2014) ACS Catal 4:2070Google Scholar
  62. 62.
    Osako T, Torii K, Uozumi Y (2015) RSC Adv 5:2647Google Scholar
  63. 63.
    Osako T, Torii K, Tazawa A, Uozumi Y (2015) RSC Adv 5:45760Google Scholar
  64. 64.
    Osako T, Torii K, Hirata S, Uozumi Y (2017) ACS Catal 7:7371Google Scholar
  65. 65.
    Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noël T (2016) Chem Soc Rev 45:83PubMedGoogle Scholar
  66. 66.
    Shen G, Osako T, Nagaosa M, Uozumi Y (2018) J Org Chem 83:7380PubMedGoogle Scholar
  67. 67.
    Pan S, Yan S, Osako T, Uozumi Y (2017) ACS Sustain Chem Eng 5:10722Google Scholar
  68. 68.
    Li R-H, An X-M, Yang Y, Li D-C, Hu Z-L, Zhan Z-P (2018) Org Lett.  https://doi.org/10.1021/acs.orglett.8b02176 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Sarmiento JT, Suárez-Pantiga S, Olmos A, Varea T, Asensio G (2017) ACS Catal 7:7146Google Scholar
  70. 70.
    Chen X, Jiang H, Hou B, Gong W, Liu Y, Cui Y (2017) J Am Chem Soc 139:13476PubMedGoogle Scholar
  71. 71.
    Nonoyama A, Kumagai N, Shibasaki M (2017) Tetrahedron 73:1517Google Scholar
  72. 72.
    Hashimoto K, Kumagai N, Shibasaki M (2014) Org Lett 16:3496PubMedGoogle Scholar
  73. 73.
    Altava B, Burguete MI, García-Verdugo E, Luis SV, Vicent MJ (2006) Green Chem 8:717Google Scholar
  74. 74.
    Osorio-Planes L, Rodríguez-Escrich C, Pericàs MA (2012) Org Lett 14:1816PubMedGoogle Scholar
  75. 75.
    Watanabe S, Nakaya N, Akai J, Kanaori K, Harada T (2018) Org Lett 20:2737PubMedGoogle Scholar
  76. 76.
    Burguete MI, Cornejo A, García-Verdugo E, Gil MJ, Luis SV, Mayoral JA, Martínez-Merino V, Sokolova M (2007) J Org Chem 72:4344PubMedGoogle Scholar
  77. 77.
    Burguete MI, Cornejo A, García-Verdugo E, García J, Gil MJ, Luis SV, Martínez-Merino V, Mayoral JA, Sokolova M (2007) Green Chem 9:1091Google Scholar
  78. 78.
    Takeda K, Oohara T, Shimada N, Nambu H, Hashimoto S (2011) Chem Eur J 17:13992PubMedGoogle Scholar
  79. 79.
    Maestre L, Ozkal E, Ayats C, Beltrán Á, Díaz-Requejo MM, Pérez PJ, Pericàs MA (2015) Chem Sci 6:1510PubMedGoogle Scholar
  80. 80.
    Crowley DC, Lynch D, Maguire AR (2018) J Org Chem 83:3794PubMedGoogle Scholar
  81. 81.
    Chun-J Yoo, Rackl D, Liu W, Hoyt BC, Pimentel B, Lively RP, Davies HML, Jones CW (2018) Angew Chem Int Ed 57:10923Google Scholar
  82. 82.
    Basavaraju KC, Sharma S, Maurya RA, Kim DP (2013) Angew Chem Int Ed 52:6735Google Scholar
  83. 83.
    Basavaraju KC, Sharma S, Singh AK, Im DJ, Kim D-P (2014) Chemsuschem 7:1864PubMedGoogle Scholar
  84. 84.
    Munirathinam R, Ricciardi R, Egberink RJM, Huskens J, Holtkamp M, Wormeester H, Karst U, Verboom W (2013) Beilstein J Org Chem 9:1698PubMedPubMedCentralGoogle Scholar
  85. 85.
    Tran DN, Balkus KJ (2011) ACS Catal 1:95Google Scholar
  86. 86.
    Contente ML, Paradisi F (2018) Nat Cat.  https://doi.org/10.1038/s41929-018-0082-9 CrossRefGoogle Scholar
  87. 87.
    Maier M, Radtke CP, Hubbuch J, Niemeyer CM, Rabe KS (2018) Angew Chem Int Ed 57:5539Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Pharmacy, Drug SciencesUniversity of Bari “A. Moro”, FLAME-Lab-Flow Chemistry and Microreactor Technology LaboratoryBariItaly

Personalised recommendations