Advertisement

Topics in Current Chemistry

, 376:38 | Cite as

Thiophene Syntheses by Ring Forming Multicomponent Reactions

  • Klaus Schaper
  • Thomas J. J. Müller
Review
Part of the following topical collections:
  1. Sulfur Chemistry

Abstract

Thiophenes occur as important building blocks in natural products, pharmaceutical active compounds, and in materials for electronic and opto-electronic devices. Therefore, there is a considerable demand for efficient synthetic strategies for producing these compounds. This review focuses on ring-forming multicomponent reactions for synthesizing thiophenes and their derivatives.

Keywords

Thiophene Multicomponent reactions Domino reactions One-pot processes 

Abbreviations

3CR

Three-component reaction

4CR

Four-component reaction

5CR

Five-component reaction

9CR

Nine-component reaction

13CR

Thirteen-component reaction

Ac

Acetyl

EDG

Electron donating group

EWG

Electron withdrawing group

(het)aryl

Aryl or heteroaryl

MCR

Multicomponent reaction

r.t.

Room temperature

TBDMS

Tert-Butyldimethylsilyl

Ts

Tosyl

Notes

Acknowledgements

We gratefully acknowledge the support of the Fonds der Chemischen Industrie (FCI).

References

  1. 1.
    Gronowitz S (1985) In: Gronowitz S (ed) Preparation of thiophenes by ring-closure reactions and from other ring systems in thiophene and its derivatives, vol 1. Wiley, New York, p 88.  https://doi.org/10.1002/9780470187234.ch1 CrossRefGoogle Scholar
  2. 2.
    Bertaina-Anglade V, La Rochelle CD, Scheller DKA (2006) Antidepressant properties of rotigotine in experimental models of depression. Eur J Pharmacol 548:106.  https://doi.org/10.1016/j.ejphar.2006.07.022 CrossRefPubMedGoogle Scholar
  3. 3.
    Chao EC (2011) Canagliflozin: sodium/glucose cotransporter 2 inhibitor treatment of type 2 diabetes treatment of obesity. Drugs Future 36:351.  https://doi.org/10.1358/dof.2011.36.5.1590789 CrossRefGoogle Scholar
  4. 4.
    Hirbec H, Gaviria M, Vignon J (2001) Gacyclidine: a new neuroprotective agent acting at the N-methyl-d-aspartate receptor. CNS Drug Rev 7:172.  https://doi.org/10.1111/j.1527-3458.2001.tb00194.x CrossRefPubMedGoogle Scholar
  5. 5.
    Petroski RE, Pomeroy JE, Das R, Bowman H, Yang WD, Chen AP, Foster AC (2006) Indiplon is a high-affinity positive allosteric modulator with selectivity for α 1 subunit-containing GABA(A) receptors. J Pharmacol Exp Ther 317:369.  https://doi.org/10.1124/jpet.105.096701 CrossRefPubMedGoogle Scholar
  6. 6.
    Röhrig S, Straub A, Pohlmann J, Lampe T, Pernerstorfer J, Schlemmer KH, Reinemer P, Perzborn E (2005) Discovery of the novel antithrombotic agent 5-chloro-N-({(5S)-2-oxo-3 4-(3-oxomorpholin-4-yl)phenyl -1,3-oxazolidin- 5-yl}methyl)thiophene-2-carboxamide (BAY 59-7939): an oral, direct factor Xa inhibitor. J Med Chem 48:5900.  https://doi.org/10.1021/jm050101d CrossRefGoogle Scholar
  7. 7.
    Ruilope L, Jager B, Prichard B (2001) Eprosartan versus enalapril in elderly patients with hypertension: a double-blind. Random Trial Blood Press 10:223.  https://doi.org/10.1080/08037050152669747 CrossRefGoogle Scholar
  8. 8.
    Wafford KA, van Niel MB, Ma QP, Horridge E, Herd MB, Peden DR, Belelli D, Lambert JJ (2009) Novel compounds selectively enhance δ subunit containing GABA(A) receptors and increase tonic currents in thalamus. Neuropharmacology 56:182.  https://doi.org/10.1016/j.neuropharm.2008.08.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Müller TJJ, Bunz UHF (2007) Functional organic materials, synthesis, strategies, and applications. Wiley, Germany.  https://doi.org/10.1002/9783527610266 CrossRefGoogle Scholar
  10. 10.
    Barbarella G, Melucci M, Sotgiu G (2005) The versatile thiophene: an overview of recent research on thiophene-based materials. Adv Mater 17:1581.  https://doi.org/10.1002/adma.200402020 CrossRefGoogle Scholar
  11. 11.
    Mishra A, Ma CQ, Bäuerle P (2009) Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem Rev 109:1141.  https://doi.org/10.1021/cr8004229 CrossRefPubMedGoogle Scholar
  12. 12.
    Otero R, Gallego JM, de Parga ALV, Martin N, Miranda R (2011) Molecular self-assembly at solid surfaces. Adv Mater 23:5148.  https://doi.org/10.1002/adma.201102022 CrossRefPubMedGoogle Scholar
  13. 13.
    Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953.  https://doi.org/10.1021/cr050143+ CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang L, Colella NS, Cherniawski BP, Mannsfeld SCB, Briseno AL (2014) Oligothiophene semiconductors: synthesis, characterization, and applications for organic devices. ACS Appl Mater Interfaces 6:5327.  https://doi.org/10.1021/am4060468 CrossRefPubMedGoogle Scholar
  15. 15.
    Zhao XG, Zhan XW (2011) Electron transporting semiconducting polymers in organic electronics. Chem Soc Rev 40:3728.  https://doi.org/10.1039/c0cs00194e CrossRefPubMedGoogle Scholar
  16. 16.
    Fichou D (1999) Handbook of oligo- and polythiophenes. Wiley, WeiheimGoogle Scholar
  17. 17.
    Bäuerle P, Becher J, Lau J, Mark P (2007) In: Müllen K, Wegner G (eds) Sulfur‐containing oligomers in electronic materials: the oligomer approach. Wiley, Weinheim, p 105.  https://doi.org/10.1002/9783527603220.ch2 CrossRefGoogle Scholar
  18. 18.
    Hotta S (1997) In: Nalwa HS (ed) Handbook of organic conducting materials and polymers, vol 2. Wiley, ChichesterGoogle Scholar
  19. 19.
    Fichou D (2000) Structural order in conjugated oligothiophenes and its implications on opto-electronic devices. J Mater Chem 10:571.  https://doi.org/10.1039/a908312j CrossRefGoogle Scholar
  20. 20.
    Geiger F, Stoldt M, Schweizer H, Bäuerle P, Umbach E (1993) Electroluminescence from oligothiophene-based light-emitting devices. Adv Mater 5:922.  https://doi.org/10.1002/adma.19930051210 CrossRefGoogle Scholar
  21. 21.
    Mitschke U, Debaerdemaeker T, Bäuerle P (2000) Structure-property relationships in mixed oligoheterocycles based on end-capped oligothiophenes. Eur J Org Chem 2000:425CrossRefGoogle Scholar
  22. 22.
    Perepichka IF, Perepichka DF, Meng H, Wudl F (2005) Light-emitting polythiophenes. Adv Mater 17:2281.  https://doi.org/10.1002/adma.200500461 CrossRefGoogle Scholar
  23. 23.
    Yook KS, Lee JY (2012) Organic materials for deep blue phosphorescent organic light-emitting diodes. Adv Mater 24:3169.  https://doi.org/10.1002/adma.201200627 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhong CM, Duan CH, Huang F, Wu HB, Cao Y (2011) Materials and devices toward fully solution processable organic light-emitting diodes. Chem Mater 23:326.  https://doi.org/10.1021/cm101937p CrossRefGoogle Scholar
  25. 25.
    Garnier F, Hajlaoui R, Yassar A, Srivastava P (1994) All-polymer field-effect transistor realized by printing techniques. Science 265:1684.  https://doi.org/10.1126/science.265.5179.1684 CrossRefPubMedGoogle Scholar
  26. 26.
    Garnier F, Horowitz G, Peng XH, Fichou D (1990) An all-organic soft thin-film transistor with very high carrier mobility. Adv Mater 2:592.  https://doi.org/10.1002/adma.19900021207 CrossRefGoogle Scholar
  27. 27.
    Horowitz G, Fichou D, Peng XZ, Xu ZG, Garnier F (1989) A filed-effect transistor based on conjugated α-sexithienyl. Solid State Commun 72:381.  https://doi.org/10.1016/0038-1098(89)90121-x CrossRefGoogle Scholar
  28. 28.
    Ong BS, Wu YL, Liu P, Gardner S (2004) High-performance semiconducting polythiophenes for organic thin-film transistors. J Am Chem Soc 126:3378.  https://doi.org/10.1021/ja039772w CrossRefPubMedGoogle Scholar
  29. 29.
    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123.  https://doi.org/10.1126/science.290.5499.2123 CrossRefPubMedGoogle Scholar
  30. 30.
    Waldauf C, Schilinsky P, Perisutti M, Hauch J, Brabec CJ (2003) Solution-processed organic n-type thin-film transistors. Adv Mater 15:2084.  https://doi.org/10.1002/adma.200305623 CrossRefGoogle Scholar
  31. 31.
    Wang CL, Dong HL, Hu WP, Liu YQ, Zhu DB (2012) Semiconducting pi-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112:2208.  https://doi.org/10.1021/cr100380z CrossRefPubMedGoogle Scholar
  32. 32.
    Facchetti A (2011) π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 23:733.  https://doi.org/10.1021/cm102419z CrossRefGoogle Scholar
  33. 33.
    Noma N, Tsuzuki T, Shirota Y (1995) α-Thiophene octamer as a new class of photoactive material for photoelectrical conversion. Adv Mater 7:647.  https://doi.org/10.1002/adma.19950070709 CrossRefGoogle Scholar
  34. 34.
    Schulze K, Uhrich C, Schuppel R, Leo K, Pfeiffer M, Brier E, Reinold E, Bäuerle P (2006) Efficient vacuum-deposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C-60. Adv Mater 18:2872.  https://doi.org/10.1002/adma.200600658 CrossRefGoogle Scholar
  35. 35.
    Son HJ, He F, Carsten B, Yu LP (2011) Are we there yet? Design of better conjugated polymers for polymer solar cells. J Mater Chem 21:18934.  https://doi.org/10.1039/c1jm12388b CrossRefGoogle Scholar
  36. 36.
    Yamada H, Okujima T, Ono N (2008) Organic semiconductors based on small molecules with thermally or photochemically removable groups. Chem Commun 2008:2957CrossRefGoogle Scholar
  37. 37.
    Wu WP, Liu YQ, Zhu DB (2010) π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications. Chem Soc Rev 39:1489.  https://doi.org/10.1039/b813123f CrossRefPubMedGoogle Scholar
  38. 38.
    Yamao T, Shimizu Y, Terasaki K, Hotta S (2008) Organic light-emitting field-effect transistors operated by alternating-current gate voltages. Adv Mater 20:4109.  https://doi.org/10.1002/adma.200800942 CrossRefGoogle Scholar
  39. 39.
    Campbell NL, Duffy WL, Thomas GI, Wild JH, Kelly SM, Bartle K, O’Neill M, Minter V, Tuffin RP (2002) Nematic 2,5-disubstituted thiophenes. J Mater Chem 12:2706.  https://doi.org/10.1039/b202073b CrossRefGoogle Scholar
  40. 40.
    Kitamura T, Lee CH, Taniguchi Y, Fujiwara Y, Sano Y, Matsumoto M (1997) Transformation of liquid-crystalline diaryldiacetylenes to liquid-crystalline 2,5-diarylthiophenes. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 293:239.  https://doi.org/10.1080/10587259708042774 CrossRefGoogle Scholar
  41. 41.
    Masui K, Mori A, Okano K, Takamura K, Kinoshita M, Ikeda T (2011) Syntheses and properties of donor–acceptor-type 2,5-diarylthiophene and 2,5-diarylthiazole. Org Lett 2004:6.  https://doi.org/10.1021/ol049386z CrossRefGoogle Scholar
  42. 42.
    James DK, Tour JM (2005) In: DeCola L (ed) Molecular wires in molecular wires: from design to properties, vol 257. Springer, Berlin, p 33.  https://doi.org/10.1007/b136066 CrossRefGoogle Scholar
  43. 43.
    Robertson N, McGowan CA (2003) A comparison of potential molecular wires as components for molecular electronics. Chem Soc Rev 32:96.  https://doi.org/10.1039/b206919a CrossRefPubMedGoogle Scholar
  44. 44.
    Carroll RL, Gorman CB (2002) The genesis of molecular electronics. Angew Chem Int Ed 41:4379CrossRefGoogle Scholar
  45. 45.
    Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911.  https://doi.org/10.1038/nature02498 CrossRefPubMedGoogle Scholar
  46. 46.
    Metzger RM (2008) Unimolecular electronics. J Mater Chem 18:4364.  https://doi.org/10.1039/b802804b CrossRefGoogle Scholar
  47. 47.
    Tour JM (2000) Molecular electronics. synthesis and testing of components. Acc Chem Res 33:791.  https://doi.org/10.1021/er0000612 CrossRefPubMedGoogle Scholar
  48. 48.
    Holliday S, Li YL, Luscombe CK (2017) Recent advances in high performance donor–acceptor polymers for organic photovoltaics. Prog Polym Sci 70:34.  https://doi.org/10.1016/j.progpolymsci.2017.03.003 CrossRefGoogle Scholar
  49. 49.
    Kumavat PP, Sonar P, Dalal DS (2017) An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements. Renew Sustain Energy Rev 78:1262.  https://doi.org/10.1016/j.rser.2017.05.011 CrossRefGoogle Scholar
  50. 50.
    Mishra A, Rana T, Looser A, Stolte M, Würthner F, Bäuerle P, Sharma GD (2016) High performance A–D–A oligothiophene-based organic solar cells employing two-step annealing and solution-processable copper thiocyanate (CuSCN) as an interfacial hole transporting layer. J Mater Chem A 4:17344.  https://doi.org/10.1039/c6ta07640h CrossRefGoogle Scholar
  51. 51.
    Fitzner R, Mena-Osteritz E, Walzer K, Pfeiffer M, Bäuerle P (1845) A–D–A-type oligothiophenes for small molecule organic solar cells: extending the pi-system by introduction of ring-locked double Bonds. Adv Funct Mater 2015:25.  https://doi.org/10.1002/adfm.201404210 CrossRefGoogle Scholar
  52. 52.
    Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Korner C, Leo K, Riede M, Weil M, Tsaryova O, Weiss A, Uhrich C, Pfeiffer M, Bäuerle P (2011) Dicyanovinyl-substituted oligothiophenes: structure-property relationships and application in vacuum-processed small-molecule organic solar cells. Adv Funct Mater 21:897.  https://doi.org/10.1002/adfm.201001639 CrossRefGoogle Scholar
  53. 53.
    Mishra A, Popovic D, Vogt A, Kast H, Leitner T, Walzer K, Pfeiffer M, Mena-Osteritz E, Bäuerle P (2014) A–D–A-type S, N-heteropentacenes: next-generation molecular donor materials for efficient vacuum-processed organic solar cells. Adv Mater 26:7217.  https://doi.org/10.1002/adma.201402448 CrossRefPubMedGoogle Scholar
  54. 54.
    Uhrich C, Schüppel R, Petrich A, Pfeiffer M, Leo K, Brier E, Kilickiran P, Bäuerle P (2007) Organic thin-film photovoltaic cells based on oligothiophenes with reduced bandgap. Adv Funct Mater 17:2991.  https://doi.org/10.1002/adfm.200600917 CrossRefGoogle Scholar
  55. 55.
    Bey E, Marchais-Oberwinkler S, Negri M, Kruchten P, Oster A, Klein T, Spadaro A, Werth R, Frotscher M, Birk B, Hartmann RW (2009) New Insights into the SAR and binding modes of bis(hydroxyphenyl)thiophenes and -benzenes: influence of additional substituents on 17 beta-hydroxysteroid dehydrogenase type 1 (17 beta-HSD1) inhibitory activity and selectivity. J Med Chem 52:6724.  https://doi.org/10.1021/jm901195w CrossRefPubMedGoogle Scholar
  56. 56.
    Pairet M, van Ryn J (2004) COX-2 inhibitors. Birkhäuser, BaselCrossRefGoogle Scholar
  57. 57.
    Chandra R, Kung MP, Kung HF (2006) Design, synthesis, and structure-activity relationship of novel thiophene derivatives for β-amyloid plaque imaging. Biorg Med Chem Lett 16:1350.  https://doi.org/10.1016/j.bmcl.2005.11.055 CrossRefGoogle Scholar
  58. 58.
    Miyaura N, Suzuki A (1979) Stereoselective synthesis of arylated (E)-alkynes by the reaction of Alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J Chem Soc Chem Commun.  https://doi.org/10.1039/c39790000866 CrossRefGoogle Scholar
  59. 59.
    Milstein D, Stille JK (1978) General, selective, and facile method for ketone synthesis from acid-chlorides and organotin compounds catalyzed by palladium. J Am Chem Soc 100:3636.  https://doi.org/10.1021/ja00479a077 CrossRefGoogle Scholar
  60. 60.
    Müller TJJ (2014) Relative reactivities of functional groups as the key to multicomponent reactions in multicomponent reactions 1. General discussion and reactions involving a carbonyl compound as electrophilic component. In: Müller TJJ (ed) Science of synthesis series. Georg Thieme Verlag KG, Stuttgart, p 5.  https://doi.org/10.1055/sos-sd-210-00002 CrossRefGoogle Scholar
  61. 61.
    Abbiati G, Rossi E (2014) Silver and gold-catalyzed multicomponent reactions. Beilstein J Org Chem 10:481.  https://doi.org/10.3762/bjoc.10.46 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Arndtsen BA (2009) Metal-catalyzed one-step synthesis: towards direct alternatives to multistep heterocycle and amino acid derivative formation. Chem Eur J 15:302.  https://doi.org/10.1002/chem.200800767 CrossRefPubMedGoogle Scholar
  63. 63.
    Balme G, Bossharth E, Monteiro N (2003) Pd-assisted multicomponent synthesis of heterocycles. Eur J Org Chem.  https://doi.org/10.1002/ejoc.200300378 CrossRefGoogle Scholar
  64. 64.
    D’Souza DM, Müller TJJ (1095) Multi-component syntheses of heterocycles by transition-metal catalysis. Chem Soc Rev 2007:36.  https://doi.org/10.1039/b608235c CrossRefGoogle Scholar
  65. 65.
    Kirsch SF (2008) Construction of heterocycles by the strategic use of alkyne π-activation in catalyzed cascade reactions. Synthesis.  https://doi.org/10.1055/s-0028-1083164 CrossRefGoogle Scholar
  66. 66.
    Müller TJJ (2012) Synthesis of carbo- and heterocycles via coupling-isomerization reactions. Synthesis 44:159.  https://doi.org/10.1055/s-0031-1289636 CrossRefGoogle Scholar
  67. 67.
    Beck B, Srivastava S, Khoury K, Herdtweck E, Dömling A (2010) One-pot multicomponent synthesis of two novel thiolactone scaffolds. Mol Diversity 14:479.  https://doi.org/10.1007/s11030-010-9249-2 CrossRefGoogle Scholar
  68. 68.
    Luo L, Meng L, Peng Y, Xing Y, Sun Q, Ge Z, Li R (2015) ZnCl2-promoted one-pot three-component synthesis of multisubstituted thiazolo[4,5-b]pyridines and thieno[2,3-b:4,5-b’]dipyridines. Eur J Org Chem.  https://doi.org/10.1002/ejoc.201403156 CrossRefGoogle Scholar
  69. 69.
    Jiang B, Tu X-J, Wang X, Tu S-J, Li G (2014) Copper(I)-catalyzed multicomponent reaction providing a new access to fully substituted thiophene derivatives. Org Lett 16:3656.  https://doi.org/10.1021/ol501404x CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ransborg LK, Albrecht Ł, Weise CF, Bak JR, Jørgensen KA (2012) Optical active thiophenes via an organocatalytic one-pot methodology. Org Lett 14:724CrossRefGoogle Scholar
  71. 71.
    Wen L-R, He T, Lan M-C, Li M (2013) Three-component cascade annulation of β-ketothioamides promoted by CF3CH2OH: a regioselective synthesis of tetrasubstituted thiophenes. J Org Chem 78:10617.  https://doi.org/10.1021/jo401397d CrossRefPubMedGoogle Scholar
  72. 72.
    Shestopalov AM, Shestopalov AA, Rodinovskaya LA (2008) Multicomponent reactions of carbonyl compounds and derivatives of cyanoacetic acid: synthesis of carbo- and heterocycles. Synthesis.  https://doi.org/10.1055/s-2007-990942 CrossRefGoogle Scholar
  73. 73.
    Samet AV, Shestopalov AM, Nesterov VN, Semenov VV (1997) An improved stereoselective synthesis of 5-acyl-2-amino-4-aryl-3-cyano-4,5-dihydrothiophenes. Synthesis 1997:623CrossRefGoogle Scholar
  74. 74.
    Moghaddam FM, Bardajee GR, Dolabi M (2010) An efficient one-pot synthesis of tri-substituted thiophenes via a multicomponent reaction in water. J Sulfur Chem 31:387.  https://doi.org/10.1080/17415993.2010.496129 CrossRefGoogle Scholar
  75. 75.
    Moghaddam FM, Khodabakhshi MR, Latifkar A (2014) A one-pot multicomponent synthesis of polysubstituted thiophenes via the reactions of an isocyanide, α-haloketones, and β-ketodithioesters in water. Tetrahedron Lett 55:1251.  https://doi.org/10.1016/j.tetlet.2014.01.014 CrossRefGoogle Scholar
  76. 76.
    Nagaraju S, Satyanarayana N, Paplal B, Vasu AK, Kanvah S, Sridhar B, Sripadi P, Kashinath D (2015) One-pot synthesis of functionalized isoxazole-thiolane hybrids via Knoevenagel condensation and domino sulfa-1,6-Michael/intramolecular vinylogous Henry reactions. RSC Adv 5:94474.  https://doi.org/10.1039/c5ra16721c CrossRefGoogle Scholar
  77. 77.
    Acharya A, Parameshwarappa G, Saraiah B, Ila H (2015) Sequential one-pot synthesis of tri- and tetrasubstituted thiophenes and fluorescent push pull thiophene acrylates involving (het)aryl dithioesters as thiocarbonyl precursors. J Org Chem 80:414.  https://doi.org/10.1021/jo502429c CrossRefPubMedGoogle Scholar
  78. 78.
    Zubarev AA, Shestopalov AM, Larionova NA, Rodinovskaya LA, Shestopalov AA (2013) New regio-selective method of combinatorial synthesis of substituted thiophenes, thieno[3,2-b]pyridines and other heterocycles via combination of ‘domino’-type reactions. Tetrahedron 69:9648.  https://doi.org/10.1016/j.tet.2013.09.025 CrossRefGoogle Scholar
  79. 79.
    Hossaini Z, Rostami-Charati F, Soltani S, Mirzaei A, Berijani K (2011) Multicomponent reactions of ammonium thiocyanate, acyl chlorides, alkyl bromides, and enaminones: a facile one-pot synthesis of thiophenes. Mol Divers 15:911.  https://doi.org/10.1007/s11030-011-9322-5 CrossRefPubMedGoogle Scholar
  80. 80.
    Rostami-Charati F, Hassankhani A, Hossaini Z (2012) Microwave-assisted multicomponent reactions of alkyl bromides: synthesis of thiophene derivatives. Comb Chem High Throughput Screen 15:822CrossRefGoogle Scholar
  81. 81.
    Alizadeh A, Hosseinabadi M, Bayat F (1056) Amine-mediated sequential one-pot synthesis of highly substituted thiophenes from β-keto esters, arylisothiocyanates and chloroacetoacetate. Phosphorus Sulfur Silicon Relat Elem 2015:190.  https://doi.org/10.1080/10426507.2014.965817 CrossRefGoogle Scholar
  82. 82.
    Sable PN, Ganguly S, Chaudhari PD (1099) An efficient one-pot three-component synthesis and antimicrobial evaluation of tetra substituted thiophene derivatives. Chin Chem Lett 2014:25.  https://doi.org/10.1016/j.cclet.2014.03.044 CrossRefGoogle Scholar
  83. 83.
    Yerande SG, More SD, Bhandari M, Newase KM, Khoury K, Wang K, Dömling A (2014) A facile diversity-oriented multicomponent one-pot synthesis of 3-amino-6,7-dihydrobenzo[c]thiophen-4(5H)-one derivatives from α-Oxo-N, S-ketene acetal. J Heterocycl Chem 51:E358.  https://doi.org/10.1002/jhet.1899 CrossRefGoogle Scholar
  84. 84.
    Teiber M, Giebeler S, Lessing T, Müller TJJ (2013) Efficient pseudo-five-component coupling-Fiesselmann synthesis of luminescent oligothiophenes and their modification. Org Biomol Chem 11:3541.  https://doi.org/10.1039/c3ob40124c CrossRefPubMedGoogle Scholar
  85. 85.
    Teiber M, Müller TJJ (2012) Rapid consecutive three-component coupling-Fiesselmann synthesis of luminescent 2,4-disubstituted thiophenes and oligothiophenes. Chem Commun 48:2080.  https://doi.org/10.1039/c2cc17548g CrossRefGoogle Scholar
  86. 86.
    Klukas F, Perkampus J, Urselmann D, Müller TJJ (2014) Pseudo five-component synthesis of 3-(hetero)arylmethyl-2,5-di(hetero)-aryl-substituted thiophenes via Sonogashira–Glaser cyclization sequence. Synthesis 46:3415.  https://doi.org/10.1055/s-0034-1379074 CrossRefGoogle Scholar
  87. 87.
    Sun J, Xia E, Zhang L, Yan C (2010) A novel four-component reaction involving ring-opening/recyclization of 1,3-thiazolidinedione. Scie China Chem 53:863.  https://doi.org/10.1007/s11426-010-0123-y CrossRefGoogle Scholar
  88. 88.
    Sun J, Xia E-Y, Yao R, Yan C-G (2011) Convenient synthesis of polyfunctional dihydrothiophenes with tandem reaction of 1,3-thiazolidinedione, aldehyde, arylamine and ethyl cyanoacetate. Mol Divers 15:115.  https://doi.org/10.1007/s11030-010-9278-x CrossRefPubMedGoogle Scholar
  89. 89.
    Sun J, Xia E-Y, Zhang L-L, Yan C-G (2009) Triethylamine-catalyzed domino reactions of 1,3-thiazolidinedione: a facile access to functionalized dihydrothiophenes. Eur J Org Chem.  https://doi.org/10.1002/ejoc.200900845 CrossRefGoogle Scholar
  90. 90.
    Urselmann D, Antovic D, Müller TJJ (2011) Pseudo five-component synthesis of 2,5-di(hetero)arylthiophenes via a one-pot Sonogashira-Glaser cyclization sequence. Beilstein J Org Chem 7:1499.  https://doi.org/10.3762/bjoc.7.174 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Zali-Boeini H, Ghani M (2013) An aquatic pseudo-four-component reaction for the synthesis of highly substituted thiophenes. Synthesis 45:913.  https://doi.org/10.1055/s-0032-1316866 CrossRefGoogle Scholar
  92. 92.
    Jalani HB, Pandya AN, Baraiya AB, Kaila JC, Pandya DH, Sharma JA, Sudarsanam V, Vasu KK (2011) An efficient synthesis of 2-aminopyrroles from enaminone–amidine adduct and phenacyl/benzyl/heteroalkyl-halides. Tetrahedron Lett 52:6331.  https://doi.org/10.1016/j.tetlet.2011.08.149 CrossRefGoogle Scholar
  93. 93.
    Adib M, Rajai-Daryasarei S, Pashazadeh R, Jahani M, Amanlou M (2018) Reaction between chalcones, 1,3-dicarbonyl compounds, and elemental sulfur: a one-pot three-component synthesis of substituted thiophenes. Synlett 29:1583CrossRefGoogle Scholar
  94. 94.
    Abaee MS, Cheraghi S (2014) Efficient three-component Gewald reactions under Et3N/H2O conditions. J Sulfur Chem 35:261.  https://doi.org/10.1080/17415993.2013.860141 CrossRefGoogle Scholar
  95. 95.
    Harza K, Saravanan J, Mohan S (2007) Synthesis and antiinflammatory evaluation of some new thiophene analogs. Asian J Chem 19:3541Google Scholar
  96. 96.
    Wang K, Kim D, Dömling A (2010) Cyanoacetamide MCR (III): three-component Gewald reactions revisited. J Comb Chem 12:111.  https://doi.org/10.1021/cc9001586 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Patra BR, Mohan S, Saravanan J (2007) Synthesis, characterization and biological screening of some new condensed N-methyl piperidino thiophenes. Asian J Chem 19:4368Google Scholar
  98. 98.
    Oezbek H, Veljkovic IS, Reissig H-U (2008) Gewald synthesis of aminothiophene carboxylic acids providing new dipeptide analogues. Synlett.  https://doi.org/10.1055/s-0028-1087243 CrossRefGoogle Scholar
  99. 99.
    Shaaban MR, Elwahy AHM (2013) Synthesis of furo-, pyrrolo-, and thieno-fused heterocycles by multi-component reactions (Part 1). Curr Org Synth 10:425.  https://doi.org/10.2174/1570179411310030007 CrossRefGoogle Scholar
  100. 100.
    Shearouse WC, Shumba MZ, Mack J, Solvent-Free A (2014) One-step, one-pot Gewald reaction for alkyl-aryl ketones via mechanochemistry. Appl Sci Basel 4:171.  https://doi.org/10.3390/app4020171 CrossRefGoogle Scholar
  101. 101.
    Huang Y, Dömling A (2011) The Gewald multicomponent reaction. Mol Divers 15:3.  https://doi.org/10.1007/s11030-010-9229-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations