Advertisement

Carbon Materials from Technical Lignins: Recent Advances

  • Alexander M. Puziy
  • Olga I. Poddubnaya
  • Olena Sevastyanova
Review
  • 38 Downloads
Part of the following topical collections:
  1. Lignin Chemistry

Abstract

Lignin, a major component of lignocellulosic biomass, is generated in enormous amounts during the pulp production. It is also a major coproduct of second generation biofuels. The effective utilization of lignin is critical for the accelerated development of the advanced cellulosic biorefinery. Low cost and availability of lignin make it attractive precursor for preparation of a range of carbon materials, including activated carbons, activated carbon fibers (CF), structural CF, graphitic carbons or carbon black that could be used for environmental protection, as catalysts, in energy storage applications or as reinforcing components in advanced composite materials. Technical lignins are very diverse in terms of their molecular weight, structure, chemical reactivity, and chemical composition, which is a consequence of the different origin of the lignin and the various methods of lignin isolation. The inherent heterogeneity of lignin is the main obstacle to the preparation of high-performance CF. Although lignin-based CF still do not compete with polyacrylonitrile-derived CF in mechanical properties, they nevertheless provide new markets through high availability and low production costs. Alternatively, technical lignin could be used for production of carbon adsorbents, which have very high surface areas and pore volumes comparable to the best commercial activated carbons. These porous carbons are useful for purifying gas and aqueous media from organic pollutants or adsorption of heavy metal ions from aqueous solutions. They also could be used as catalysts or electrodes in electrochemical applications.

Keywords

Lignin Activated carbon Carbon fibers Carbon catalyst Carbon electrodes 

Notes

Acknowledgements

The Knut and Alice Wallenberg Foundation in connection with the Wallenberg Wood Science Centre Program (WWSC) is gratefully acknowledged for the financial support of the work of Dr. Olena Sevastyanova. The Cost Action FP 1306 LIGNOVAL is acknowledged for the initiation of the current work.

References

  1. 1.
    Gosselink RJA, de Jong E, Guran B, Abächerli A (2004) Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind Crops Prod 20:121–129.  https://doi.org/10.1016/j.indcrop.2004.04.015 CrossRefGoogle Scholar
  2. 2.
    Gargulak JD, Lebo SE, McNally TJ (2015) Lignin. Kirk–Othmer encyclopedia of chemical technology. Wiley, Hoboken, pp 1–26Google Scholar
  3. 3.
    Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interface Sci 19:409–416.  https://doi.org/10.1016/j.cocis.2014.08.004 CrossRefGoogle Scholar
  4. 4.
    Liu W-J, Jiang H, Yu H-Q (2015) Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem 17:4888–4907.  https://doi.org/10.1039/C5GC01054C CrossRefGoogle Scholar
  5. 5.
    Li Q, Xie S, Serem WK et al (2017) Quality carbon fibers from fractionated lignin. Green Chem 19:1628–1634.  https://doi.org/10.1039/C6GC03555H CrossRefGoogle Scholar
  6. 6.
    Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioResources 6:3547–3568Google Scholar
  7. 7.
    Gargulak JD, Lebo SE (1999) Commercial use of lignin-based materials. In: Glasser WG, Northey RA, Schultz TP (eds) Lignin: historical, biological and materials perspectives. ACS Symposium Series, American Chemical Society, Washington DC, pp 304–320Google Scholar
  8. 8.
    Satheesh Kumar MN, Mohanty AK, Erickson L, Misra M (2009) Lignin and its applications with polymers. J Biobased Mater Bioenergy 3:1–24.  https://doi.org/10.1166/jbmb.2009.1001 CrossRefGoogle Scholar
  9. 9.
    Rinaldi R, Jastrzebski R, Clough MT et al (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed 55:8164–8215.  https://doi.org/10.1002/anie.201510351 CrossRefGoogle Scholar
  10. 10.
    Renders T, Van den Bosch S, Koelewijn S-F et al (2017) Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ Sci 10:1551–1557.  https://doi.org/10.1039/C7EE01298E CrossRefGoogle Scholar
  11. 11.
    Suhas Carrott PJM, Ribeiro Carrott MML (2007) Lignin—from natural adsorbent to activated carbon: a review. Bioresour Technol 98:2301–2312.  https://doi.org/10.1016/j.biortech.2006.08.008 CrossRefPubMedGoogle Scholar
  12. 12.
    Mainka H, Täger O, Körner E et al (2015) Lignin—an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Mater Res Technol 4:283–296.  https://doi.org/10.1016/j.jmrt.2015.03.004 CrossRefGoogle Scholar
  13. 13.
    Chatterjee S, Saito T (2015) Lignin-derived advanced carbon materials. Chemsuschem 8:3941–3958.  https://doi.org/10.1002/cssc.201500692 CrossRefPubMedGoogle Scholar
  14. 14.
    Graichen FHM, Grigsby WJ, Hill SJ et al (2017) Yes, we can make money out of lignin and other bio-based resources. Ind Crops Prod 106:74–85.  https://doi.org/10.1016/j.indcrop.2016.10.036 CrossRefGoogle Scholar
  15. 15.
    Gosselink RJA (2011) Lignin as a renewable aromatic resource for the chemical industry. PhD Thesis, Wageningen University, Wageningen, the NetherlandsGoogle Scholar
  16. 16.
    Huang X (2009) Fabrication and properties of carbon fibers. Materials 2:2369–2403.  https://doi.org/10.3390/ma2042369 CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130:713–728.  https://doi.org/10.1002/app.39273 CrossRefGoogle Scholar
  18. 18.
    Frank E, Steudle LM, Ingildeev D et al (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed 53:5262–5298.  https://doi.org/10.1002/anie.201306129 CrossRefGoogle Scholar
  19. 19.
    Ragauskas AJ, Beckham GT, Biddy MJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843.  https://doi.org/10.1126/science.1246843 CrossRefPubMedGoogle Scholar
  20. 20.
    Titirici M-M, White RJ, Brun N et al (2015) Sustainable carbon materials. Chem Soc Rev 44:250–290.  https://doi.org/10.1039/c4cs00232f CrossRefPubMedGoogle Scholar
  21. 21.
    Ko FK, Goudarzi A, Lin L-T, et al (2016) Lignin-based composite carbon nanofibers. In: Lignin in polymer composites. Elsevier, Amsterdam, pp 167–194Google Scholar
  22. 22.
    Dias OAT, Negrão DR, Gonçalves DFC et al (2017) Recent approaches and future trends for lignin-based materials. Mol Cryst Liq Cryst 655:204–223.  https://doi.org/10.1080/15421406.2017.1360713 CrossRefGoogle Scholar
  23. 23.
    Fang W, Yang S, Wang X-L et al (2017) Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chem 19:1794–1827.  https://doi.org/10.1039/C6GC03206K CrossRefGoogle Scholar
  24. 24.
    Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. Chemsuschem 3:1227–1235.  https://doi.org/10.1002/cssc.201000157 CrossRefPubMedGoogle Scholar
  25. 25.
    Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805.  https://doi.org/10.1016/j.cej.2015.08.014 CrossRefGoogle Scholar
  26. 26.
    Rabinovich ML, Fedoryak O, Dobele G et al (2016) Carbon adsorbents from industrial hydrolysis lignin: the USSR/Eastern European experience and its importance for modern biorefineries. Renew Sustain Energy Rev 57:1008–1024.  https://doi.org/10.1016/j.rser.2015.12.206 CrossRefGoogle Scholar
  27. 27.
    Kadla JF, Kubo S, Venditti RA et al (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40:2913–2920.  https://doi.org/10.1016/S0008-6223(02)00248-8 CrossRefGoogle Scholar
  28. 28.
    Kadla JF, Kubo S, Gilbert RD, Venditti RA (2002) Lignin-based carbon fibers. In: Hu TQ (ed) Chemical modification, properties, and usage of lignin. Springer, New York, pp 121–137CrossRefGoogle Scholar
  29. 29.
    Kubo S, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37:6904–6911.  https://doi.org/10.1021/ma0490552 CrossRefGoogle Scholar
  30. 30.
    Kubo S, Kadla JF (2005) Kraft lignin/poly(ethylene oxide) blends: effect of lignin structure on miscibility and hydrogen bonding. J Appl Polym Sci 98:1437–1444.  https://doi.org/10.1002/app.22245 CrossRefGoogle Scholar
  31. 31.
    Kubo S, Kadla JF (2005) Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ 13:97–105.  https://doi.org/10.1007/s10924-005-2941-0 CrossRefGoogle Scholar
  32. 32.
    Maradur SP, Kim CH, Kim SY et al (2012) Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met 162:453–459.  https://doi.org/10.1016/j.synthmet.2012.01.017 CrossRefGoogle Scholar
  33. 33.
    Liu HC, Chien AT, Newcomb BA et al (2016) Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 101:382–389.  https://doi.org/10.1016/j.carbon.2016.01.096 CrossRefGoogle Scholar
  34. 34.
    Oroumei A, Fox B, Naebe M (2015) Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight organosolv lignin. ACS Sustain Chem Eng 3:758–769.  https://doi.org/10.1021/acssuschemeng.5b00097 CrossRefGoogle Scholar
  35. 35.
    Youe WJ, Lee SM, Lee SS et al (2016) Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. Int J Biol Macromol 82:497–504.  https://doi.org/10.1016/j.ijbiomac.2015.10.022 CrossRefPubMedGoogle Scholar
  36. 36.
    Sevastyanova O, Qin W, Kadla JF (2010) Effect of nanofillers as reinforcement agents for lignin composite fibers. J Appl Polym Sci 117:2877–2881.  https://doi.org/10.1002/app.32198 CrossRefGoogle Scholar
  37. 37.
    Qin W, Kadla JF (2011) Effect of organoclay reinforcement on lignin-based carbon fibers. Ind Eng Chem Res 50:12548–12555.  https://doi.org/10.1021/ie201319p CrossRefGoogle Scholar
  38. 38.
    Baker FS, Baker DA, Menchhofer PA (2011) Carbon nanotube (CNT)-enhanced precursor for carbon fiber production and method of making a CNT-enhanced continuous lignin fiber. US Patent 2011285049, 24 Nov 2011Google Scholar
  39. 39.
    Wang S, Zhou Z, Xiang H et al (2016) Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes. Compos Sci Technol 128:116–122.  https://doi.org/10.1016/j.compscitech.2016.03.018 CrossRefGoogle Scholar
  40. 40.
    Lin J, Koda K, Kubo S et al (2014) Improvement of mechanical properties of softwood lignin-based carbon fibers. J Wood Chem Technol 34:111–121.  https://doi.org/10.1080/02773813.2013.839707 CrossRefGoogle Scholar
  41. 41.
    Sudo K, Shimizu K (1992) A new carbon fiber from lignin. J Appl Polym Sci 44:127–134.  https://doi.org/10.1002/app.1992.070440113 CrossRefGoogle Scholar
  42. 42.
    Uraki Y, Kubo S, Nigo N et al (1995) Preparation of carbon fibers from organosolv lignin obtained by aqueous acetic acid pulping. Holzforschung 49:343–350.  https://doi.org/10.1515/hfsg.1995.49.4.343 CrossRefGoogle Scholar
  43. 43.
    Eckert RC, Abdullah Z (2008) Carbon fibers from kraft softwood lignin. US Patent 2008317661, 25 Dec 2008Google Scholar
  44. 44.
    Sudo K, Shimizu K, Nakashima N, Yokoyama A (1993) A new modification method of exploded lignin for the preparation of a carbon fiber precursor. J Appl Polym Sci 48:1485–1491.  https://doi.org/10.1002/app.1993.070480817 CrossRefGoogle Scholar
  45. 45.
    Ding R, Wu H, Thunga M et al (2016) Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends. Carbon 100:126–136.  https://doi.org/10.1016/j.carbon.2015.12.078 CrossRefGoogle Scholar
  46. 46.
    Wohlmann B, Woelki M, Ebert A et al (2010) Lignin derivative, shaped body comprising the derivative, and carbon-fibres produced from the shaped body. World Patent 2010081775, 22 Jul 2010Google Scholar
  47. 47.
    Brodin I, Sjöholm E, Gellerstedt G (2009) Kraft lignin as feedstock for chemical products: the effects of membrane filtration. Holzforschung 63:290–297.  https://doi.org/10.1515/HF.2009.049 CrossRefGoogle Scholar
  48. 48.
    Nordström Y, Norberg I, Sjöholm E, Drougge R (2013) A new softening agent for melt spinning of softwood kraft lignin. J Appl Polym Sci 129:1274–1279.  https://doi.org/10.1002/app.38795 CrossRefGoogle Scholar
  49. 49.
    Yoshida H, Mörck R, Kringstad KP, Hatakeyama H (1987) Fractionation of kraft lignin by successive extraction with organic solvents. II. Thermal Properties of kraft lignin fractions. Holzforschung 41:171–176.  https://doi.org/10.1515/hfsg.1987.41.3.171 CrossRefGoogle Scholar
  50. 50.
    Mörck R, Reimann A, Kringstad KP (1988) Fractionation of kraft lignin by successive extraction with organic solvents. III. Fractionation of kraft lignin from birch. Holzforschung 42:111–116.  https://doi.org/10.1515/hfsg.1988.42.2.111 CrossRefGoogle Scholar
  51. 51.
    Kubo S, Uraki Y, Sano Y (1998) Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon 36:1119–1124.  https://doi.org/10.1016/S0008-6223(98)00086-4 CrossRefGoogle Scholar
  52. 52.
    Hosseinaei O, Harper DP, Bozell JJ, Rials TG (2017) Improving processing and performance of pure lignin carbon fibers through hardwood and herbaceous lignin blends. Int J Mol Sci 18:1410.  https://doi.org/10.3390/ijms18071410 CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Cho M, Karaaslan M, Chowdhury S et al (2018) Skipping oxidative thermal stabilization for lignin-based carbon nanofibers. ACS Sustain Chem Eng 6:6434–6444.  https://doi.org/10.1021/acssuschemeng.8b00209 CrossRefGoogle Scholar
  54. 54.
    Li Q, Serem WK, Dai W et al (2017) Molecular weight and uniformity define the mechanical performance of lignin-based carbon fiber. J Mater Chem A 5:12740–12746.  https://doi.org/10.1039/C7TA01187C CrossRefGoogle Scholar
  55. 55.
    Qu W, Liu J, Xue Y et al (2018) Potential of producing carbon fiber from biorefinery corn stover lignin with high ash content. J Appl Polym Sci 135:1–11.  https://doi.org/10.1002/app.45736 CrossRefGoogle Scholar
  56. 56.
    Dai Z, Shi X, Liu H et al (2018) High-strength lignin-based carbon fibers via a low-energy method. RSC Adv 8:1218–1224.  https://doi.org/10.1039/C7RA10821D CrossRefGoogle Scholar
  57. 57.
    Nar M, Rizvi HR, Dixon RA et al (2016) Superior plant based carbon fibers from electrospun poly-(caffeyl alcohol) lignin. Carbon 103:372–383.  https://doi.org/10.1016/j.carbon.2016.02.053 CrossRefGoogle Scholar
  58. 58.
    Marsh H, Rodríguez-Reinoso F (2006) Activated carbon. Elsevier, OxfordGoogle Scholar
  59. 59.
    Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, HobokenCrossRefGoogle Scholar
  60. 60.
    Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC, Boca RatonCrossRefGoogle Scholar
  61. 61.
    Ragan S, Megonnell N (2011) Activated carbon from renewable resources—lignin. Cellul Chem Technol 45:527–531Google Scholar
  62. 62.
    Rodríguez-Reinoso F (2002) Production and applications of activated carbons. In: Schüth F, Sing KSW, Weitkamp J (eds) Handbook of porous solids. Wiley, Weinheim, pp 1766–1827CrossRefGoogle Scholar
  63. 63.
    González-García P (2018) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev 82:1393–1414.  https://doi.org/10.1016/j.rser.2017.04.117 CrossRefGoogle Scholar
  64. 64.
    Lü Q-F, He Z-W, Zhang J-Y, Lin Q (2011) Preparation and properties of nitrogen-containing hollow carbon nanospheres by pyrolysis of polyaniline–lignosulfonate composites. J Anal Appl Pyrolysis 92:152–157.  https://doi.org/10.1016/j.jaap.2011.05.009 CrossRefGoogle Scholar
  65. 65.
    He Z-W, Lü Q-F, Lin Q (2013) Fabrication, characterization and application of nitrogen-containing carbon nanospheres obtained by pyrolysis of lignosulfonate/poly(2-ethylaniline). Bioresour Technol 127:66–71.  https://doi.org/10.1016/j.biortech.2012.09.132 CrossRefPubMedGoogle Scholar
  66. 66.
    Rodríguez-Mirasol J, Cordero T, Rodriguez JJ (1993) Activated carbons from carbon dioxide partial gasification of eucalyptus kraft lignin. Energy Fuels 7:133–138.  https://doi.org/10.1021/ef00037a021 CrossRefGoogle Scholar
  67. 67.
    Rodríguez-Mirasol J, Cordero T, Rodríguez JJ (1993) Preparation and characterization of activated carbons from eucalyptus kraft lignin. Carbon 31:87–95.  https://doi.org/10.1016/0008-6223(93)90160-C CrossRefGoogle Scholar
  68. 68.
    Cotoruelo LM, Marqués MD, Díaz FJ et al (2007) Activated carbons from lignin: their application in liquid phase adsorption. Sep Sci Technol 42:3363–3389CrossRefGoogle Scholar
  69. 69.
    Cotoruelo LM, Marqués MD, Díaz FJ et al (2010) Equilibrium and kinetic study of congo red adsorption onto lignin-based activated carbons. Transp Porous Media 83:573–590.  https://doi.org/10.1007/s11242-009-9460-8 CrossRefGoogle Scholar
  70. 70.
    Cotoruelo LM, Marqués MD, Rodríguez-Mirasol J et al (2011) Cationic dyes removal by multilayer adsorption on activated carbons from lignin. J Porous Mater 18:693–702.  https://doi.org/10.1007/s10934-010-9428-7 CrossRefGoogle Scholar
  71. 71.
    Cotoruelo LM, Marqués MD, Díaz FJ et al (2012) Lignin-based activated carbons as adsorbents for crystal violet removal from aqueous solutions. Environ Prog Sustain Energy 31:386–396.  https://doi.org/10.1002/ep.10560 CrossRefGoogle Scholar
  72. 72.
    Cotoruelo LM, Marqués MD, Rodríguez-Mirasol J et al (2007) Adsorption of aromatic compounds on activated carbons from lignin: equilibrium and thermodynamic study. Ind Eng Chem Res 46:4982–4990.  https://doi.org/10.1021/ie061415h CrossRefGoogle Scholar
  73. 73.
    Cotoruelo LM, Marqués MD, Rodríguez-Mirasol J et al (2007) Adsorption of aromatic compounds on activated carbons from lignin: kinetic study. Ind Eng Chem Res 46:2853–2860.  https://doi.org/10.1021/ie061445k CrossRefGoogle Scholar
  74. 74.
    Cotoruelo LM, Marqués MD, Leiva A et al (2011) Adsorption of oxygen-containing aromatics used in petrochemical, pharmaceutical and food industries by means of lignin based active carbons. Adsorption 17:539–550.  https://doi.org/10.1007/s10450-010-9319-x CrossRefGoogle Scholar
  75. 75.
    Cotoruelo LM, Marqués MD, Díaz FJ et al (2012) Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions. Chem Eng J 184:176–183.  https://doi.org/10.1016/j.cej.2012.01.026 CrossRefGoogle Scholar
  76. 76.
    Cotoruelo LM, Marqués MD, Rodríguez-Mirasol J et al (2009) Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate: equilibrium and kinetic studies. J Colloid Interface Sci 332:39–45.  https://doi.org/10.1016/j.jcis.2008.12.031 CrossRefPubMedGoogle Scholar
  77. 77.
    Rodríguez-Mirasol J, Bedia J, Cordero T, Rodríguez JJ (2005) Influence of water vapor on the adsorption of VOCs on lignin-based activated carbons. Sep Sci Technol 40:3113–3135.  https://doi.org/10.1080/01496390500385277 CrossRefGoogle Scholar
  78. 78.
    Bedia J, Rodríguez-Mirasol J, Cordero T (2007) Water vapour adsorption on lignin-based activated carbons. J Chem Technol Biotechnol 82:548–557.  https://doi.org/10.1002/jctb.1698 CrossRefGoogle Scholar
  79. 79.
    Gonzalez-Serrano E, Cordero T, Rodríguez-Mirasol J et al (2004) Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors. Water Res 38:3043–3050.  https://doi.org/10.1016/j.watres.2004.04.048 CrossRefPubMedGoogle Scholar
  80. 80.
    Fierro V, Torné-Fernández V, Celzard A (2006) Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: synthesis and textural characterisation. Micropor Mesopor Mater 92:243–250.  https://doi.org/10.1016/j.micromeso.2006.01.013 CrossRefGoogle Scholar
  81. 81.
    Montané D, Torné-Fernández V, Fierro V (2005) Activated carbons from lignin: kinetic modeling of the pyrolysis of kraft lignin activated with phosphoric acid. Chem Eng J 106:1–12.  https://doi.org/10.1016/j.cej.2004.11.001 CrossRefGoogle Scholar
  82. 82.
    Fierro V, Torné-Fernández V, Montané D, Celzard A (2005) Study of the decomposition of kraft lignin impregnated with orthophosphoric acid. Thermochim Acta 433:142–148.  https://doi.org/10.1016/j.tca.2005.02.026 CrossRefGoogle Scholar
  83. 83.
    Fierro V, Torné-Fernández V, Celzard A, Montané D (2007) Influence of the demineralisation on the chemical activation of kraft lignin with orthophosphoric acid. J Hazard Mater 149:126–133.  https://doi.org/10.1016/j.jhazmat.2007.03.056 CrossRefPubMedGoogle Scholar
  84. 84.
    Gonzalez-Serrano E, Cordero T, Rodríguez-Mirasol J, Rodríguez JJ (1997) Development of porosity upon chemical activation of kraft lignin with ZnCl2. Ind Eng Chem Res 36:4832–4838.  https://doi.org/10.1021/ie970261q CrossRefGoogle Scholar
  85. 85.
    Rosas JM, Ruiz-Rosas R, Rodríguez-Mirasol J, Cordero T (2017) Kinetic study of SO2 removal over lignin-based activated carbon. Chem Eng J 307:707–721.  https://doi.org/10.1016/j.cej.2016.08.111 CrossRefGoogle Scholar
  86. 86.
    Hayashi J, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38:1873–1878.  https://doi.org/10.1016/S0008-6223(00)00027-0 CrossRefGoogle Scholar
  87. 87.
    Maldhure AV, Ekhe JD (2011) Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu(II) sorption. Chem Eng J 168:1103–1111.  https://doi.org/10.1016/j.cej.2011.01.091 CrossRefGoogle Scholar
  88. 88.
    Fierro V, Torné-Fernández V, Celzard A (2007) Methodical study of the chemical activation of kraft lignin with KOH and NaOH. Micropor Mesopor Mater 101:419–431.  https://doi.org/10.1016/j.micromeso.2006.12.004 CrossRefGoogle Scholar
  89. 89.
    Guo Y, Rockstraw DA (2006) Physical and chemical properties of carbons synthesized from xylan, cellulose, and kraft lignin by H3PO4 activation. Carbon 44:1464–1475.  https://doi.org/10.1016/j.carbon.2005.12.002 CrossRefGoogle Scholar
  90. 90.
    Sharma RK, Wooten JB, Baliga VL et al (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482.  https://doi.org/10.1016/j.fuel.2003.11.015 CrossRefGoogle Scholar
  91. 91.
    Li J, Li B, Zhang X (2002) Comparative studies of thermal degradation between larch lignin and manchurian ash lignin. Polym Degrad Stab 78:279–285.  https://doi.org/10.1016/S0141-3910(02)00172-6 CrossRefGoogle Scholar
  92. 92.
    Saha D, Akkoyunlu SD, Thorpe R et al (2017) Adsorptive recovery of neodymium and dysprosium in phosphorous functionalized nanoporous carbon. J Environ Chem Eng 5:4684–4692.  https://doi.org/10.1016/j.jece.2017.09.009 CrossRefGoogle Scholar
  93. 93.
    Myglovets M, Poddubnaya OI, Sevastyanova O et al (2014) Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon 80:771–783.  https://doi.org/10.1016/j.carbon.2014.09.032 CrossRefGoogle Scholar
  94. 94.
    Puziy AM, Tascón JMD (2012) Adsorption by phosphorus-containing carbons. In: Tascón JMD (ed) Novel carbon adsorbents. Elsevier, Amsterdam, pp 245–267CrossRefGoogle Scholar
  95. 95.
    Puzii AM (2011) Methods of production, structure, and physicochemical characteristics of phosphorylated carbon adsorbents. Theor Exp Chem 47:277–291.  https://doi.org/10.1007/s11237-011-9216-8 CrossRefGoogle Scholar
  96. 96.
    Puziy AM, Poddubnaya OI, Socha RP et al (2008) XPS and NMR studies of phosphoric acid activated carbons. Carbon 46:2113–2123.  https://doi.org/10.1016/j.carbon.2008.09.010 CrossRefGoogle Scholar
  97. 97.
    Puziy AM, Poddubnaya OI (1998) The properties of synthetic carbon derived from nitrogen- and phosphorus-containing polymer. Carbon 36:45–50.  https://doi.org/10.1016/S0008-6223(97)00149-8 CrossRefGoogle Scholar
  98. 98.
    Puziy AM, Poddubnaya OI (1999) Characterization of surface heterogeneity of carbon-composite adsorbents. Mater Sci Forum 308–311:908–916.  https://doi.org/10.4028/www.scientific.net/MSF.308-311.908 CrossRefGoogle Scholar
  99. 99.
    Puziy AM, Poddubnaya OI, Martínez-Alonso A et al (2002) Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties. Carbon 40:1493–1505.  https://doi.org/10.1016/S0008-6223(01)00317-7 CrossRefGoogle Scholar
  100. 100.
    Puziy AM, Poddubnaya OI, Martínez-Alonso A et al (2003) Synthetic carbons activated with phosphoric acid. III. Carbons prepared in air. Carbon 41:1181–1191.  https://doi.org/10.1016/S0008-6223(03)00031-9 CrossRefGoogle Scholar
  101. 101.
    Puziy AM, Poddubnaya OI, Martínez-Alonso A et al (2005) Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon 43:2857–2868.  https://doi.org/10.1016/j.carbon.2005.06.014 CrossRefGoogle Scholar
  102. 102.
    Puziy AM, Poddubnaya OI, Martínez-Alonso A et al (2007) Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon 45:1941–1950.  https://doi.org/10.1016/j.carbon.2007.06.014 CrossRefGoogle Scholar
  103. 103.
    Puziy AM, Poddubnaya OI, Zaitsev VN, Konoplitska OP (2004) Modeling of heavy metal ion binding by phosphoric acid activated carbon. Appl Surf Sci 221:421–429.  https://doi.org/10.1016/S0169-4332(03)00956-5 CrossRefGoogle Scholar
  104. 104.
    Puziy AM, Poddubnaya OI, Gawdzik B et al (2007) Functionalization of carbon and silica gel by phosphoric acid. Adsorpt Sci Technol 25:531–542CrossRefGoogle Scholar
  105. 105.
    Sych NV, Trofymenko SI, Poddubnaya OI et al (2012) Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Appl Surf Sci 261:75–82.  https://doi.org/10.1016/j.apsusc.2012.07.084 CrossRefGoogle Scholar
  106. 106.
    Sánchez-Polo M, Rivera-Utrilla J (2002) Adsorbent–adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons. Environ Sci Technol 36:3850–3854.  https://doi.org/10.1021/es0255610 CrossRefPubMedGoogle Scholar
  107. 107.
    Rivera-Utrilla J, Sánchez-Polo M (2003) Adsorption of Cr(III) on ozonised activated carbon. Importance of Cπ-cation interactions. Water Res 37:3335–3340.  https://doi.org/10.1016/S0043-1354(03)00177-5 CrossRefPubMedGoogle Scholar
  108. 108.
    Zou Y, Han B (2001) Preparation of activated carbons from chinese coal and hydrolysis lignin. Adsorpt Sci Technol 19:59–72.  https://doi.org/10.1260/0263617011493971 CrossRefGoogle Scholar
  109. 109.
    Cheng F, Liang J, Zhao J et al (2008) Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake. Chem Mater 20:1889–1895.  https://doi.org/10.1021/cm702816x CrossRefGoogle Scholar
  110. 110.
    Fierro CM, Górka J, Zazo JA et al (2013) Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from kraft lignin. Carbon 62:233–239.  https://doi.org/10.1016/j.carbon.2013.06.012 CrossRefGoogle Scholar
  111. 111.
    Valero-Romero MJ, Márquez-Franco EM, Bedia J et al (2014) Hierarchical porous carbons by liquid phase impregnation of zeolite templates with lignin solution. Micropor Mesopor Mater 196:68–78.  https://doi.org/10.1016/j.micromeso.2014.04.055 CrossRefGoogle Scholar
  112. 112.
    Saha D, Payzant EA, Kumbhar AS, Naskar AK (2013) Sustainable mesoporous carbons as storage and controlled-delivery media for functional molecules. ACS Appl Mater Interfaces 5:5868–5874.  https://doi.org/10.1021/am401661f CrossRefPubMedGoogle Scholar
  113. 113.
    Saha D, Warren KE, Naskar AK (2014) Soft-templated mesoporous carbons as potential materials for oral drug delivery. Carbon 71:47–57.  https://doi.org/10.1016/j.carbon.2014.01.005 CrossRefGoogle Scholar
  114. 114.
    Saha D, Warren KE, Naskar AK (2014) Controlled release of antipyrine from mesoporous carbons. Micropor Mesopor Mater 196:327–334.  https://doi.org/10.1016/j.micromeso.2014.05.024 CrossRefGoogle Scholar
  115. 115.
    Zhao W, Lin X, Cai H et al (2017) Preparation of mesoporous carbon from sodium lignosulfonate by hydrothermal and template method and its adsorption of uranium(VI). Ind Eng Chem Res 56:12745–12754.  https://doi.org/10.1021/acs.iecr.7b02854 CrossRefGoogle Scholar
  116. 116.
    Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518.  https://doi.org/10.1126/science.1120937 CrossRefPubMedGoogle Scholar
  117. 117.
    Liu W, Yao Y, Fu O et al (2017) Lignin-derived carbon nanosheets for high-capacitance supercapacitors. RSC Adv 7:48537–48543.  https://doi.org/10.1039/C7RA08531A CrossRefGoogle Scholar
  118. 118.
    Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefining 4:160–177.  https://doi.org/10.1002/bbb.198 CrossRefGoogle Scholar
  119. 119.
    Wikberg H, Grönberg V, Jermakka J et al (2015) Hydrothermal refining of biomass—an overview and future perspectives. Tappi J 14:195–207Google Scholar
  120. 120.
    Sangchoom W, Mokaya R (2015) Valorization of lignin waste: carbons from hydrothermal carbonization of renewable lignin as superior sorbents for CO2 and hydrogen storage. ACS Sustain Chem Eng 3:1658–1667.  https://doi.org/10.1021/acssuschemeng.5b00351 CrossRefGoogle Scholar
  121. 121.
    Atta-Obeng E, Dawson-Andoh B, Seehra MS et al (2017) Physico-chemical characterization of carbons produced from technical lignin by sub-critical hydrothermal carbonization. Biomass Bioenerg 107:172–181.  https://doi.org/10.1016/j.biombioe.2017.09.023 CrossRefGoogle Scholar
  122. 122.
    Kadla JF, Kubo S, Venditti RA, Gilbert RD (2002) Novel hollow core fibers prepared from lignin polypropylene blends. J Appl Polym Sci 85:1353–1355.  https://doi.org/10.1002/app.10640 CrossRefGoogle Scholar
  123. 123.
    Kubo S, Yoshida T, Kadla JF (2007) Surface porosity of lignin/PP blend carbon fibers. J Wood Chem Technol 27:257–271.  https://doi.org/10.1080/02773810701702238 CrossRefGoogle Scholar
  124. 124.
    Lallave M, Bedia J, Ruiz-Rosas R et al (2007) Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers. Adv Mater 19:4292–4296.  https://doi.org/10.1002/adma.200700963 CrossRefGoogle Scholar
  125. 125.
    Ruiz-Rosas R, Bedia J, Lallave M et al (2010) The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon 48:696–705.  https://doi.org/10.1016/j.carbon.2009.10.014 CrossRefGoogle Scholar
  126. 126.
    García-Mateos FJ, Cordero-Lanzac T, Berenguer R et al (2017) Lignin-derived Pt supported carbon (submicron)fiber electrocatalysts for alcohol electro-oxidation. Appl Catal B Environ 211:18–30.  https://doi.org/10.1016/j.apcatb.2017.04.008 CrossRefGoogle Scholar
  127. 127.
    Wang S-X, Yang L, Stubbs LP et al (2013) Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5:12275–12282.  https://doi.org/10.1021/am4043867 CrossRefPubMedGoogle Scholar
  128. 128.
    Lai C, Zhou Z, Zhang L et al (2014) Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sources 247:134–141.  https://doi.org/10.1016/j.jpowsour.2013.08.082 CrossRefGoogle Scholar
  129. 129.
    Uraki Y, Kubo S, Kurakami H, Sano Y (1997) activated carbon fibers from acetic acid lignin. Holzforschung 51:188–192.  https://doi.org/10.1515/hfsg.1997.51.2.188 CrossRefGoogle Scholar
  130. 130.
    García-Mateos FJ, Berenguer R, Valero-Romero MJ et al (2018) Phosphorus functionalization for the rapid preparation of highly nanoporous submicron-diameter carbon fibers by electrospinning of lignin solutions. J Mater Chem A 6:1219–1233.  https://doi.org/10.1039/C7TA08788H CrossRefGoogle Scholar
  131. 131.
    Li X, Zuo Y, Zhang Y et al (2013) In situ preparation of K2CO3 supported kraft lignin activated carbon as solid base catalyst for biodiesel production. Fuel 113:435–442.  https://doi.org/10.1016/j.fuel.2013.06.008 CrossRefGoogle Scholar
  132. 132.
    Guo F, Xiu Z-L, Liang Z-X (2012) Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst. Appl Energy 98:47–52.  https://doi.org/10.1016/j.apenergy.2012.02.071 CrossRefGoogle Scholar
  133. 133.
    Liang F, Song Y, Huang C et al (2013) Preparation and performance evaluation of a lignin-based solid acid from acid hydrolysis lignin. Catal Commun 40:93–97.  https://doi.org/10.1016/j.catcom.2013.06.005 CrossRefGoogle Scholar
  134. 134.
    Budarin VL, Clark JH, Henschen J et al (2015) Processed lignin as a byproduct of the generation of 5-(Chloromethyl)furfural from biomass: a promising new mesoporous material. Chemsuschem 8:4172–4179.  https://doi.org/10.1002/cssc.201501319 CrossRefPubMedGoogle Scholar
  135. 135.
    Zhu J, Gan L, Li B, Yang X (2017) Synthesis and characteristics of lignin-derived solid acid catalysts for microcrystalline cellulose hydrolysis. Korean J Chem Eng 34:110–117.  https://doi.org/10.1007/s11814-016-0220-5 CrossRefGoogle Scholar
  136. 136.
    Gan L, Zhu J, Lv L (2017) Cellulose hydrolysis catalyzed by highly acidic lignin-derived carbonaceous catalyst synthesized via hydrothermal carbonization. Cellulose 24:5327–5339.  https://doi.org/10.1007/s10570-017-1515-3 CrossRefGoogle Scholar
  137. 137.
    Hu S, Zhang S, Pan N, Hsieh Y-L (2014) High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J Power Sources 270:106–112.  https://doi.org/10.1016/j.jpowsour.2014.07.063 CrossRefGoogle Scholar
  138. 138.
    Puziy AM, Kochkin YN, Poddubnaya OI, Tsyba MM (2017) Ethyl tert-butyl ether synthesis using carbon catalysts from lignocellulose. Adsorpt Sci Technol 35:473–481.  https://doi.org/10.1177/0263617417696091 CrossRefGoogle Scholar
  139. 139.
    Bedia J, Rosas JM, Márquez J et al (2009) Preparation and characterization of carbon based acid catalysts for the dehydration of 2-propanol. Carbon 47:286–294.  https://doi.org/10.1016/j.carbon.2008.10.008 CrossRefGoogle Scholar
  140. 140.
    Babeł K, Jurewicz K (2008) KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption. Carbon 46:1948–1956.  https://doi.org/10.1016/j.carbon.2008.08.005 CrossRefGoogle Scholar
  141. 141.
    Saha D, Li Y, Bi Z et al (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30:900–910.  https://doi.org/10.1021/la404112m CrossRefPubMedGoogle Scholar
  142. 142.
    Ruiz-Rosas R, Valero-Romero MJ, Salinas-Torres D et al (2014) Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates. Chemsuschem 7:1458–1467.  https://doi.org/10.1002/cssc.201301408 CrossRefPubMedGoogle Scholar
  143. 143.
    Salinas-Torres D, Ruiz-Rosas R, Valero-Romero MJ et al (2016) Asymmetric capacitors using lignin-based hierarchical porous carbons. J Power Sources 326:641–651.  https://doi.org/10.1016/j.jpowsour.2016.03.096 CrossRefGoogle Scholar
  144. 144.
    Li H, Yuan D, Tang C et al (2016) Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100:151–157.  https://doi.org/10.1016/j.carbon.2015.12.075 CrossRefGoogle Scholar
  145. 145.
    Berenguer R, García-Mateos FJ, Ruiz-Rosas R et al (2016) Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chem 18:1506–1515.  https://doi.org/10.1039/C5GC02409A CrossRefGoogle Scholar
  146. 146.
    Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI et al (2009) Highly stable performance of supercapacitors from phosphorus-enriched carbons. J Am Chem Soc 131:5026–5027.  https://doi.org/10.1021/ja809265m CrossRefPubMedGoogle Scholar
  147. 147.
    Huang C, Sun T, Hulicova-Jurcakova D (2013) Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons. Chemsuschem 6:2330–2339.  https://doi.org/10.1002/cssc.201300457 CrossRefPubMedGoogle Scholar
  148. 148.
    Huang C, Puziy AM, Sun T et al (2014) Capacitive behaviours of phosphorus-rich carbons derived from lignocelluloses. Electrochim Acta 137:219–227.  https://doi.org/10.1016/j.electacta.2014.05.101 CrossRefGoogle Scholar
  149. 149.
    Berenguer R, Ruiz-Rosas R, Gallardo A et al (2015) Enhanced electro-oxidation resistance of carbon electrodes induced by phosphorus surface groups. Carbon 95:681–689.  https://doi.org/10.1016/j.carbon.2015.08.101 CrossRefGoogle Scholar
  150. 150.
    Huang C, Puziy AM, Poddubnaya OI et al (2018) Phosphorus, nitrogen and oxygen co-doped polymer-based core-shell carbon sphere for high-performance hybrid supercapacitors. Electrochim Acta 270:339–351.  https://doi.org/10.1016/j.electacta.2018.02.115 CrossRefGoogle Scholar
  151. 151.
    Yu F, Li Y, Jia M et al (2017) Elaborate construction and electrochemical properties of lignin-derived macro-/micro-porous carbon-sulfur composites for rechargeable lithium-sulfur batteries: the effect of sulfur-loading time. J Alloys Compd 709:677–685.  https://doi.org/10.1016/j.jallcom.2017.03.204 CrossRefGoogle Scholar
  152. 152.
    Zhang H, Jia D, Yang Z et al (2017) Alkaline lignin derived porous carbon as an efficient scaffold for lithium–selenium battery cathode. Carbon 122:547–555.  https://doi.org/10.1016/j.carbon.2017.07.004 CrossRefGoogle Scholar
  153. 153.
    Jin J, Yu BJ, Shi ZQ et al (2014) Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J Power Sources 272:800–807.  https://doi.org/10.1016/j.jpowsour.2014.08.119 CrossRefGoogle Scholar
  154. 154.
    Rodríguez-Mirasol J, Cordero T, Rodríguez JJ (1996) High-temperature carbons from kraft lignin. Carbon 34:43–52.  https://doi.org/10.1016/0008-6223(95)00133-6 CrossRefGoogle Scholar
  155. 155.
    Törmälä P, Romppanen M (1981) Preparation of glassy carbon from lignins and lignin condensates. J Mater Sci 16:272–274.  https://doi.org/10.1007/BF00552084 CrossRefGoogle Scholar
  156. 156.
    Snowdon MR, Mohanty AK, Misra M (2014) A study of carbonized lignin as an alternative to carbon black. ACS Sustain Chem Eng 2:1257–1263.  https://doi.org/10.1021/sc500086v CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute for Sorption and Problems of EndoecologyNAS of UkraineKievUkraine
  2. 2.Department of Fiber and Polymer TechnologyThe Royal Institute of Technology (KTH)StockholmSweden

Personalised recommendations