Topics in Current Chemistry

, 375:12 | Cite as

Nanostructured Materials Synthesis Using Ultrasound

Review
Part of the following topical collections:
  1. Sonochemistry: From basic principles to innovative applications

Abstract

Recent applications of ultrasound to the production of nanostructured materials are reviewed. Sonochemistry permits the production of novel materials or provides a route to known materials without the need for high bulk temperatures, pressures, or long reaction times. Both chemical and physical phenomena associated with high-intensity ultrasound are responsible for the production or modification of nanomaterials. Most notable are the consequences of acoustic cavitation: the formation, growth, and implosive collapse of bubbles, and can be categorized as primary sonochemistry (gas-phase chemistry occurring inside collapsing bubbles), secondary sonochemistry (solution-phase chemistry occurring outside the bubbles), and physical modifications (caused by high-speed jets, shockwaves, or inter-particle collisions in slurries).

Keywords

Sonochemistry Nanomaterials Microspheres Nanoparticles Ultrasonic 

References

  1. 1.
    Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42(7):2555–2567CrossRefGoogle Scholar
  2. 2.
    Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22(10):1039–1059CrossRefGoogle Scholar
  3. 3.
    Bang JH, Didenko YT, Helmich RJ, Suslick KS (2012) Nanostructured materials through ultrasonic spray pyrolysis. Aldrich Mater Matters 7(2):15–18Google Scholar
  4. 4.
    Shchukin DG, Radziuk D, Möhwald H (2010) Ultrasonic fabrication of metallic nanomaterials and nanoalloys. Annu Rev Mater Res 40(1):345–362CrossRefGoogle Scholar
  5. 5.
    Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326. doi: 10.1146/annurev.matsci.29.1.295 CrossRefGoogle Scholar
  6. 6.
    Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683. doi: 10.1146/annurev.physchem.59.032607.093739 CrossRefGoogle Scholar
  7. 7.
    Didenko YT, McNamara WB, Suslick KS (1999) Hot spot conditions during cavitation in water. J Am Chem Soc 121(24):5817–5818. doi: 10.1021/ja9844635 CrossRefGoogle Scholar
  8. 8.
    Flint EB, Suslick KS (1991) The temperature of cavitation. Science 253(5026):1397–1399. doi: 10.1126/science.253.5026.1397 CrossRefGoogle Scholar
  9. 9.
    Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434(7029):52–55. doi: 10.1038/nature03361 CrossRefGoogle Scholar
  10. 10.
    Didenko YT, Suslick KS (2002) The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418(6896):394–397. doi: 10.1038/nature00895 CrossRefGoogle Scholar
  11. 11.
    Didenko YT, McNamara WB, Suslick KS (2000) Molecular emission from single-bubble sonoluminescence. Nature 407(6806):877–879CrossRefGoogle Scholar
  12. 12.
    Xu H, Eddingsaas NC, Suslick KS (2009) Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 131(17):6060–6061CrossRefGoogle Scholar
  13. 13.
    Ouerhani T, Pflieger R, Ben Massaoud W, Nikitenko SI (2015) Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2–Ar mixtures. J Phys Chem B 119(52):15885–15891. doi: 10.1021/acs.jpcb.5n10221 CrossRefGoogle Scholar
  14. 14.
    Riesz P, Berdahl D, Christman CL (1985) Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect 64:233–252CrossRefGoogle Scholar
  15. 15.
    Makino K, Mossoba MM, Riesz P (1982) Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (.cntdot.OH and.cntdot.H) by spin trapping. J Am Chem Soc 104(12):3537–3539CrossRefGoogle Scholar
  16. 16.
    Flint EB, Suslick KS (1989) Sonoluminescence from nonaqueous liquids—emission from small molecules. J Am Chem Soc 111(18):6987–6992. doi: 10.1021/ja00200a014 CrossRefGoogle Scholar
  17. 17.
    Suslick KS, Gawienowski JJ, Schubert PF, Wang HH (1983) Alkane sonochemistry. J Phys Chem 87(13):2299–2301. doi: 10.1021/j100236a013 CrossRefGoogle Scholar
  18. 18.
    Suslick KS, Gawienowski JJ, Schubert PF, Wang HH (1984) Sonochemistry in non-aqueous liquids. Ultrasonics 22(1):33–36. doi: 10.1016/0041-624x(84)90059-3 CrossRefGoogle Scholar
  19. 19.
    Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B 109(44):20673–20675CrossRefGoogle Scholar
  20. 20.
    Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Sonochemical synthesis of amorphous iron. Nature 353(6343):414–416CrossRefGoogle Scholar
  21. 21.
    Flannigan DJ, Hopkins SD, Suslick KS (2005) Sonochemistry and sonoluminescence in ionic liquids, molten salts, and concentrated electrolyte solutions. J Organomet Chem 690(15):3513–3517. doi: 10.1016/j.jorganchem.2005.04.024 CrossRefGoogle Scholar
  22. 22.
    Oxley JD, Prozorov T, Suslick KS (2003) Sonochemistry and sonoluminescence of room-temperature ionic liquids. J Am Chem Soc 125(37):11138–11139. doi: 10.1021/ja029830y CrossRefGoogle Scholar
  23. 23.
    Suslick KS, Fang M, Hyeon T (1996) Sonochemical synthesis of iron colloids. J Am Chem Soc 118(47):11960–11961CrossRefGoogle Scholar
  24. 24.
    Grinstaff MW, Cichowlas AA, Choe SB, Suslick KS (1992) Effect of cavitation conditions on amorphous metal synthesis. Ultrasonics 30(3):168–172CrossRefGoogle Scholar
  25. 25.
    Mdleleni MM, Hyeon T, Suslick KS (1998) Sonochemical synthesis of nanostructured molybdenum sulfide. J Am Chem Soc 120(24):6189–6190CrossRefGoogle Scholar
  26. 26.
    Hyeon T, Fang M, Suslick KS (1996) Nanostructured molybdenum carbide: sonochemical synthesis and catalytic properties. J Am Chem Soc 118(23):5492–5493CrossRefGoogle Scholar
  27. 27.
    Cau C, Nikitenko SI (2012) Mechanism of W(CO)6 sonolysis in diphenylmethane. Ultrason Sonochem 19(3):498–502CrossRefGoogle Scholar
  28. 28.
    Bang JH, Suslick KS (2007) Sonochemical synthesis of nanosized hollow hematite. J Am Chem Soc 129(8):2242–2243CrossRefGoogle Scholar
  29. 29.
    Dhas NA, Suslick KS (2005) Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J Am Chem Soc 127(8):2368–2369CrossRefGoogle Scholar
  30. 30.
    Baigent CL, Müller G (1980) A colloidal gold prepared with ultrasonics. Experientia 36(4):472–473CrossRefGoogle Scholar
  31. 31.
    Okitsu K, Sharyo K, Nishimura R (2009) One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles. Langmuir 25(14):7786–7790CrossRefGoogle Scholar
  32. 32.
    Zhang J, Du J, Han B, Liu Z, Jiang T, Zhang Z (2006) Sonochemical formation of single-crystalline gold nanobelts. Angew Chem Int Edit 45(7):1116–1119CrossRefGoogle Scholar
  33. 33.
    Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, Rodríguez-González B, García de Abajo FJ, Liz-Marzán LM (2006) Synthesis and optical properties of gold nanodecahedra with size control. Adv Mater 18(19):2529–2534CrossRefGoogle Scholar
  34. 34.
    Jiang L-P, Xu S, Zhu J-M, Zhang J-R, Zhu J-J, Chen H-Y (2004) Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg Chem 43(19):5877–5883CrossRefGoogle Scholar
  35. 35.
    Zhang P, He J, Ma X, Gong J, Nie Z (2013) Ultrasound assisted interfacial synthesis of gold nanocones. Chem Commun 49(10):987–989CrossRefGoogle Scholar
  36. 36.
    Mizukoshi Y, Fujimoto T, Nagata Y, Oshima R, Maeda Y (2000) Characterization and catalytic activity of core–shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J Phys Chem B 104(25):6028–6032CrossRefGoogle Scholar
  37. 37.
    Anandan S, Grieser F, Ashokkumar M (2008) Sonochemical synthesis of au–ag core–shell bimetallic nanoparticles. J Phys Chem C 112(39):15102–15105CrossRefGoogle Scholar
  38. 38.
    Ataee-Esfahani H, Wang L, Nemoto Y, Yamauchi Y (2010) Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem Mat 22(23):6310–6318CrossRefGoogle Scholar
  39. 39.
    Gümeci C, Cearnaigh DU, Casadonte DJ, Korzeniewski C (2013) Synthesis of PtCu3 bimetallic nanoparticles as oxygen reduction catalysts via a sonochemical method. J Mater Chem A 1(6):2322–2329CrossRefGoogle Scholar
  40. 40.
    Godínez-García A, Pérez-Robles JF, Martínez-Tejada HV, Solorza-Feria O (2012) Characterization and electrocatalytic properties of sonochemical synthesized PdAg nanoparticles. Mater Chem Phys 134(2–3):1013–1019CrossRefGoogle Scholar
  41. 41.
    Matin MA, Jang J-H, Kwon Y-U (2014) PdM nanoparticles (M=Ni Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. J Power Sources 262(C):356–363CrossRefGoogle Scholar
  42. 42.
    Xu H, Suslick KS (2010) Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4(6):3209–3214CrossRefGoogle Scholar
  43. 43.
    Liu T, Zhang L, Song H, Wang Z, Lv Y (2013) Sonochemical synthesis of Ag nanoclusters: electrogenerated chemiluminescence determination of dopamine. Luminescence 28(4):530–535CrossRefGoogle Scholar
  44. 44.
    Zhou T, Rong M, Cai Z, Yang CJ, Chen X (2012) Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2 sensing. Nanoscale 4(14):4103–4104CrossRefGoogle Scholar
  45. 45.
    Li J, Ke CJ, Lin C, Cai ZH, Chen CY, Chang WH (2013) Facile method for gold nanocluster synthesis and fluorescence control using toluene and ultrasound. J Med BiolGoogle Scholar
  46. 46.
    Wang C, Cheng H, Huang Y, Xu Z, Lin H, Zhang C (2015) Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb2+in living cells. Analyst 140(16):5634–5639CrossRefGoogle Scholar
  47. 47.
    Alavi MA, Morsali A (2010) Syntheses and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method. Ultrason Sonochem 17(2):441–446CrossRefGoogle Scholar
  48. 48.
    Alavi MA, Morsali A (2010) Syntheses and characterization of Sr(OH)2 and SrCO3 nanostructures by ultrasonic method. Ultrason Sonochem 17(1):132–138CrossRefGoogle Scholar
  49. 49.
    Salavati-Niasari M, Javidi J, Davar F (2010) Sonochemical synthesis of Dy2(CO3)3 nanoparticles, Dy(OH)3 nanotubes and their conversion to Dy2O3 nanoparticles. Ultrason Sonochem 17(5):870–877CrossRefGoogle Scholar
  50. 50.
    Ghanbari D, Salavati-Niasari M, Ghasemi-Kooch M (2014) A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J Ind Eng Chem 20(6):3970–3974CrossRefGoogle Scholar
  51. 51.
    Nagvenkar AP, Deokar A, Perelshtein I, Gedanken A (2016) A one-step sonochemical synthesis of stable ZnO–PVA nanocolloid as a potential biocidal agent. J Mater Chem B 4(12):2124–2132CrossRefGoogle Scholar
  52. 52.
    Vabbina PK, Kaushik A, Pokhrel N, Bhansali S, Pala N (2015) Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes. Biosens Bioelectron 63(C):124–130CrossRefGoogle Scholar
  53. 53.
    Singh G, Joyce EM, Beddow J (2012) Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. JGoogle Scholar
  54. 54.
    Gottesman R, Shukla S, Perkas N, Solovyov LA, Nitzan Y, Gedanken A (2011) Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27(2):720–726CrossRefGoogle Scholar
  55. 55.
    Abramova A, Gedanken A, Popov V, Ooi E-H, Mason TJ, Joyce EM, Beddow J, Perelshtein I, Bayazitov V (2013) A sonochemical technology for coating of textiles with antibacterial nanoparticles and equipment for its implementation. Mater Lett 96(C):121–124CrossRefGoogle Scholar
  56. 56.
    Xu F, Yuan Y, Han H, Wu D, Gao Z, Jiang K (2012) Synthesis of ZnO/CdS hierarchical heterostructure with enhanced photocatalytic efficiency under nature sunlight. Cryst Eng Comm 14(10):3615–3618CrossRefGoogle Scholar
  57. 57.
    Zhang X, Zhao H, Tao X, Zhao Y, Zhang Z (2005) Sonochemical method for the preparation of ZnO nanorods and trigonal-shaped ultrafine particles. Mater Lett 59(14–15):1745–1747CrossRefGoogle Scholar
  58. 58.
    Gao T, Wang T (2004) Sonochemical synthesis of SnO2 nanobelt/CdS nanoparticle core/shell heterostructures. Chem Commun 22:2558–2559CrossRefGoogle Scholar
  59. 59.
    Chen D, Yoo SH, Huang Q, Ali G, Cho SO (2012) Sonochemical synthesis of Ag/AgCl nanocubes and their efficient visible-light-driven photocatalytic performance. Chem Eur J 18(17):5192–5200CrossRefGoogle Scholar
  60. 60.
    Jung D-W, Yang D-A, Kim J, Kim J, Ahn W-S (2010) Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Trans 39(11):2883–2885CrossRefGoogle Scholar
  61. 61.
    Yang D-A, Cho H-Y, Kim J, Yang S-T, Ahn W-S (2012) CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ Sci 5(4):6465–6473CrossRefGoogle Scholar
  62. 62.
    Son W-J, Kim J, Kim J, Ahn W-S (2008) Sonochemical synthesis of MOF-5. Chem Commun 47:6336–6338CrossRefGoogle Scholar
  63. 63.
    Lee Y-R, Jang M-S, Cho H-Y, Kwon H-J, Kim S, Ahn W-S (2015) ZIF-8: a comparison of synthesis methods. Chem Eng J 271(C):276–280CrossRefGoogle Scholar
  64. 64.
    Lee Y-R, Cho S-M, Ahn W-S, Lee C-H, Lee K-H, Cho W-S (2015) Facile synthesis of an IRMOF-3 membrane on porous Al2O3 substrate via a sonochemical route. Microporous Mesoporous Mater 213(C):161–168CrossRefGoogle Scholar
  65. 65.
    Dharmarathna S, King’ondu CK, Pedrick W, Pahalagedara L, Suib SL (2012) Direct sonochemical synthesis of manganese octahedral molecular sieve (OMS-2) nanomaterials using cosolvent systems, their characterization, and catalytic applications. Chem Mat 24(4):705–712CrossRefGoogle Scholar
  66. 66.
    Skrabalak SE (2009) Ultrasound-assisted synthesis of carbon materials. Phys Chem Chem Phys 11(25):4930–4942CrossRefGoogle Scholar
  67. 67.
    Guo J, Zhu S, Chen Z, Li Y, Yu Z, Liu Q, Li J, Feng C, Zhang D (2011) Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst. Ultrason Sonochem 18(5):1082–1090CrossRefGoogle Scholar
  68. 68.
    Cui Y, Zhou D, Sui Z, Han B (2014) Sonochemical synthesis of graphene oxide-wrapped gold nanoparticles hybrid materials: visible light photocatalytic activity. Chin J Chem 33(1):119–124CrossRefGoogle Scholar
  69. 69.
    Zhu S, Guo J, Dong J, Cui Z, Lu T, Zhu C, Zhang D, Ma J (2013) Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors. Ultrason Sonochem 20(3):872–880CrossRefGoogle Scholar
  70. 70.
    Krishnamoorthy K, Kim G-S, Kim SJ (2013) Graphene nanosheets: ultrasound assisted synthesis and characterization. Ultrason Sonochem 20(2):644–649CrossRefGoogle Scholar
  71. 71.
    Xu H, Suslick KS (2011) Sonochemical preparation of functionalized graphenes. J Am Chem Soc 133(24):9148–9151CrossRefGoogle Scholar
  72. 72.
    Jeong S-H, Ko J-H, Park J-B, Park W (2004) A sonochemical route to single-walled carbon nanotubes under ambient conditions. J Am Chem Soc 126(49):15982–15983CrossRefGoogle Scholar
  73. 73.
    Ha H, Jeong S-H (2016) Facile route to multi-walled carbon nanotubes under ambient conditions. Korean J Chem Eng 33(2):401–404CrossRefGoogle Scholar
  74. 74.
    Yau HC, Bayazit MK, Steinke JHG, Shaffer MSP (2015) Sonochemical degradation of N-methylpyrrolidone and its influence on single walled carbon nanotube dispersion. Chem Commun 51(93):16621–16624CrossRefGoogle Scholar
  75. 75.
    Wei K, Li J, Ge Z, You Y, Xu H (2014) Sonochemical synthesis of highly photoluminescent carbon nanodots. RSC Adv 4:52230–52234CrossRefGoogle Scholar
  76. 76.
    Kumar VB, Ze Porat, Gedanken A (2016) Facile one-step sonochemical synthesis of ultrafine and stable fluorescent C-dots. Ultrason Sonochem 28:367–375. doi: 10.1016/j.ultsonch.2015.08.005 CrossRefGoogle Scholar
  77. 77.
    Suslick KS (1990) Sonochemistry. Science 247(4949):1439–1445. doi: 10.1126/science.247.4949.1439 CrossRefGoogle Scholar
  78. 78.
    Doktycz SJ, Suslick KS (1990) Interparticle collisions driven by ultrasound. Science 247(4946):1067–1069CrossRefGoogle Scholar
  79. 79.
    Prozorov T, Prozorov R, Suslick KS (2004) High velocity interparticle collisions driven by ultrasound. J Am Chem Soc 126(43):13890–13891. doi: 10.1021/ja049493o CrossRefGoogle Scholar
  80. 80.
    Shi Y, Zhu C, Wang L, Zhao C, Li W, Fung KK, Ma T, Hagfeldt A, Wang N (2013) Ultrarapid sonochemical synthesis of ZnO hierarchical structures: from fundamental research to high efficiencies up to 6.42% for quasi-solid dye-sensitized solar cells. Chem Mat 25(6):1000–1012CrossRefGoogle Scholar
  81. 81.
    Thompson JA, Chapman KW, Koros WJ, Jones CW, Nair S (2012) Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Microporous Mesoporous Mater 158(C):292–299CrossRefGoogle Scholar
  82. 82.
    Lang RJ (1962) Ultrasonic atomization of liquids. J Acoust Soc Am 34(1):6CrossRefGoogle Scholar
  83. 83.
    Mwakikunga BW (2014) Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since Michael Faraday. Crit Rev Solid State Mat Sci 39(1):46–80. doi: 10.1080/10408436.2012.687359 CrossRefGoogle Scholar
  84. 84.
    Rankin JM, Neelakantan NK, Lundberg KE, Grzincic EM, Murphy CJ, Suslick KS (2015) Magnetic, fluorescent, and copolymeric silicone microspheres. Adv Sci 2 (6)Google Scholar
  85. 85.
    Bang JH, Hehnich RJ, Suslick KS (2008) Nanostructured ZnS:Ni2+ photocatalysts prepared by ultrasonic spray pyrolysis. Adv Mater 20(13):2599. doi: 10.1002/adma.200703188 CrossRefGoogle Scholar
  86. 86.
    Helmich RJ, Suslick KS (2010) Chemical aerosol flow synthesis of hollow metallic aluminum particles. Chem Mat 22(17):4835–4837. doi: 10.1021/cm101342r CrossRefGoogle Scholar
  87. 87.
    Boissière C, Nicole L, Gervais C, Babonneau F, Antonietti M, Amenitsch H, Sanchez C, Grosso D (2006) Nanocrystalline mesoporous γ-alumina powders “UPMC1 Material” gathers thermal and chemical stability with high surface area. Chem Mat 18(22):5238–5243CrossRefGoogle Scholar
  88. 88.
    Li L, Tsung CK, Yang Z, Stucky GD, Sun LD, Wang JF, Yan CH (2008) Rare-earth-doped nanocrystalline titania microspheres emitting luminescence via energy transfer. Adv Mater 20(5):903–908CrossRefGoogle Scholar
  89. 89.
    Bang JH, Suslick KS (2009) Dual templating synthesis of mesoporous titanium nitride microspheres. Adv Mater 21(31):3186–3190CrossRefGoogle Scholar
  90. 90.
    Skrabalak SE, Suslick KS (2005) Porous MoS2 synthesized by ultrasonic spray pyrolysis. J Am Chem Soc 127(28):9990–9991. doi: 10.1021/ja051654g CrossRefGoogle Scholar
  91. 91.
    Suh WH, Jang AR, Suh YH, Suslick KS (2006) Porous, hollow, and ball-in-ball metal oxide microspheres: preparation, endocytosis, and cytotoxicity. Adv Mater 18(14):1832–1837CrossRefGoogle Scholar
  92. 92.
    Suh WH, Suslick KS (2005) Magnetic and porous nanospheres from ultrasonic spray pyrolysis. J Am Chem Soc 127(34):12007–12010. doi: 10.1021/ja050693p CrossRefGoogle Scholar
  93. 93.
    Hampsey JE, Hu Q, Rice L, Pang J, Wu Z, Lu Y (2005) A general approach towards hierarchical porous carbon particles. Chem Commun 28:3606–3608CrossRefGoogle Scholar
  94. 94.
    Hu Q, Lu Y, Meisner GP (2008) Preparation of nanoporous carbon particles and their cryogenic hydrogen storage capacities. J Phys Chem C 112(5):1516–1523CrossRefGoogle Scholar
  95. 95.
    Jung DS, Hwang TH, Park SB, Choi JW (2013) Spray drying method for large-scale and high-performance silicon negative electrodes in Li–ion batteries. Nano Lett 13(5):2092–2097CrossRefGoogle Scholar
  96. 96.
    Ko YN, Park SB, Jung KY, Kang YC (2013) One-pot facile synthesis of Ant-cave-structured metal oxide-carbon Microballs by continuous process for use as anode materials in Li-Ion batteries. Nano Lett 13(11):5462–5466. doi: 10.1021/nl4030352 CrossRefGoogle Scholar
  97. 97.
    Jung DS, Hwang TH, Lee JH, Koo HY, Shakoor RA, Kahraman R, Jo YN, Park M-S, Choi JW (2014) Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium-sulfur battery. Nano Lett 14(8):4418–4425CrossRefGoogle Scholar
  98. 98.
    Langrock A, Xu Y, Liu Y, Ehrman S, Manivannan A, Wang C (2013) Carbon coated hollow Na2FePO4F spheres for Na–ion battery cathodes. J Power Sourc 223(C):62–67CrossRefGoogle Scholar
  99. 99.
    Skrabalak SE, Suslick KS (2006) Porous carbon powders prepared by ultrasonic spray pyrolysis. J Am Chem Soc 128(39):12642–12643CrossRefGoogle Scholar
  100. 100.
    Fortunato ME, Rostam-Abadi M, Suslick KS (2010) Nanostructured carbons prepared by ultrasonic spray pyrolysis. Chem Mat 22(5):1610–1612. doi: 10.1021/cm100075j CrossRefGoogle Scholar
  101. 101.
    Overcash JW, Suslick KS (2015) High surface area iron oxide microspheres via ultrasonic spray pyrolysis of ferritin core analogues. Chem Mat 27(10):3564–3567CrossRefGoogle Scholar
  102. 102.
    Zhang Y, Huff LA, Gewirth AA, Suslick KS (2015) Synthesis of manganese oxide microspheres by ultrasonic spray pyrolysis and their application as supercapacitors. Part Part Syst Charact 32(9):899–906CrossRefGoogle Scholar
  103. 103.
    Zhang Y, Suslick KS (2015) Synthesis of poly(3,4-ethylenedioxythiophene) microspheres by ultrasonic spray polymerization (USPo). Chem Mat 27(22):7559–7563CrossRefGoogle Scholar
  104. 104.
    Mann AKP, Wicker S, Skrabalak SE (2012) Aerosol-assisted molten salt synthesis of NaInS2 nanoplates for use as a new photoanode material. Adv Mater 24(46):6186–6191. doi: 10.1002/adma.201202299 CrossRefGoogle Scholar
  105. 105.
    Chen DP, Bowers W, Skrabalak SE (2015) Aerosol-assisted combustion synthesis of single-crystalline NaSbO3 nanoplates: a topotactic template for ilmenite AgSbO3. Chem Mat 27(1):174–180CrossRefGoogle Scholar
  106. 106.
    Mann AKP, Fu J, DeSantis CJ, Skrabalak SE (2013) Spatial and temporal confinement of salt fluxes for the shape-controlled synthesis of Fe2O3 nanocrystals. Chem Mat 25(9):1549–1555. doi: 10.1021/cm3038087 CrossRefGoogle Scholar
  107. 107.
    Fu J, DeSantis CJ, Weiner RG, Skrabalak SE (2015) Aerosol-assisted synthesis of shape-controlled CoFe2O4: topotactic versus direct melt crystallization. Chem Mat 27(5):1863–1868CrossRefGoogle Scholar
  108. 108.
    Xia B, Lenggoro IW, Okuyama K (2001) Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition. Adv Mater 13(20):1579–1582CrossRefGoogle Scholar
  109. 109.
    Xia B, Lenggoro IW, Okuyama K (2001) Synthesis of CeO2 nanoparticles by salt-assisted ultrasonic aerosol decomposition. J Mater Chem 11(12):2925–2927CrossRefGoogle Scholar
  110. 110.
    Didenko YT, Suslick KS (2005) Chemical aerosol flow synthesis of semiconductor nanoparticles. J Am Chem Soc 127(35):12196–12197CrossRefGoogle Scholar
  111. 111.
    Bang JH, Suh WH, Suslick KS (2008) Quantum dots from chemical aerosol flow synthesis: preparation, characterization, and cellular imaging. Chem Mat 20(12):4033–4038. doi: 10.1021/cm800453t CrossRefGoogle Scholar
  112. 112.
    Sander JRG, Zeiger BW, Suslick KS (2014) Sonocrystallization and sonofragmentation. Ultrason Sonochem 21(6):1908–1915CrossRefGoogle Scholar
  113. 113.
    Eder RJP, Schrank S, Besenhard MO, Roblegg E, Gruber-Woelfler H, Khinast JG (2012) Continuous sonocrystallization of acetylsalicylic acid (ASA): control of crystal size. Cryst Growth Des 12(10):4733–4738CrossRefGoogle Scholar
  114. 114.
    Manish M, Harshal J, Anant P (2005) Melt sonocrystallization of ibuprofen: effect on crystal properties. Eur J Pharm Sci 25(1):41–48CrossRefGoogle Scholar
  115. 115.
    Li J, Bao Y, Wang J (2013) Effects of sonocrystallization on the crystal size distribution of cloxacillin benzathine crystals. Chem Eng Technol 36(8):1341–1346CrossRefGoogle Scholar
  116. 116.
    Bučar D-K, Elliott JA, Eddleston MD, Cockcroft JK, Jones W (2014) Sonocrystallization yields monoclinic paracetamol with significantly improved compaction behavior. Angew Chem Int Ed 54(1):249–253CrossRefGoogle Scholar
  117. 117.
    Kim HN, Sander JRG, Zeiger BW, Suslick KS (2015) Spray sonocrystallization. Cryst Growth Des 15(4):1564–1567CrossRefGoogle Scholar
  118. 118.
    Zeiger BW, Suslick KS (2011) Sonofragmentation of molecular crystals. J Am Chem Soc 133(37):14530–14533CrossRefGoogle Scholar
  119. 119.
    Song Y, Chen W, Chen X (2008) Ultrasonic field induced chiral symmetry breaking of NaClO3 crystallization. Cryst Growth Des 8(5):1448–1450CrossRefGoogle Scholar
  120. 120.
    Viedma C (2005) Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys Rev Lett 94(6):065504CrossRefGoogle Scholar
  121. 121.
    Xiouras C, Van Aeken J, Panis J, Ter Horst JH, Van Gerven T, Stefanidis GD (2015) Attrition-enhanced deracemization of NaClO3: comparison between ultrasonic and abrasive grinding. Cryst Growth Des 15(11):5476–5484CrossRefGoogle Scholar
  122. 122.
    Rougeot C, Guillen F, Plaquevent J-C, Coquerel G (2015) Ultrasound-enhanced deracemization: toward the existence of agonist effects in the interpretation of spontaneous symmetry breaking. Cryst Growth Des 15(5):2151–2155CrossRefGoogle Scholar
  123. 123.
    Lash MH, Fedorchak MV, Little SR, McCarthy JJ (2015) Fabrication and characterization of non-Brownian particle-based crystals. Langmuir 31(3):898–905CrossRefGoogle Scholar
  124. 124.
    Suslick KS, Grinstaff MW (1990) Protein microencapsulation of nonaqueous liquids. J Am Chem Soc 112(21):7807–7809CrossRefGoogle Scholar
  125. 125.
    Grinstaff MW, Suslick KS (1991) Air-filled proteinaceous microbubbles—synthesis of an echo-contrast agent. Proc Natl Acad Sci USA 88(17):7708–7710. doi: 10.1073/pnas.88.17.7708 CrossRefGoogle Scholar
  126. 126.
    Quay SC (2004) Ultrasound contrast agents including protein stabilized microspheres of perfluroropropane, perfluorobutane, or perfluoropentane. US 6,723,303Google Scholar
  127. 127.
    Kiessling F, Huppert J, Palmowski M (2009) Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem 16(5):627–642CrossRefGoogle Scholar
  128. 128.
    Grinstaff MW, Soon-Shiong P, Wong M, Sandford PA, Suslick KS, Desai NP (1997) Methods for the preparation of pharmaceutically active agents for in vivo delivery. US 5665382Google Scholar
  129. 129.
    Soon-Shiong P, Desai NP, Grinstaff MW, Sandford PA, Suslick KS (1996) Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor. US 5560933Google Scholar
  130. 130.
    Grinstaff MW, Soon-Shiong P, Wong M, Sandford PA, Suslick KS, Desai NP (1996) Composition useful for in vivo delivery of biologics and methods employing same. US 5498421Google Scholar
  131. 131.
    Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60(8):876–885. doi: 10.1016/j.addr.2007.08.044 CrossRefGoogle Scholar
  132. 132.
    Toublan FJ-J, Boppart S, Suslick KS (2006) Tumor targeting by surface-modified protein microspheres. J Am Chem Soc 128(11):3472–3473CrossRefGoogle Scholar
  133. 133.
    Lee TM, Oldenburg AL, Sitafalwalla S, Marks DL, Luo W, Toublan FJ-J, Suslick KS, Boppart SA (2003) Engineered microsphere contrast agents for optical coherence tomography. Opt Lett 28(17):1546–1548CrossRefGoogle Scholar
  134. 134.
    John R, Nguyen FT, Kolbeck KJ, Chaney EJ, Marjanovic M, Suslick KS, Boppart SA (2011) Targeted multifunctional multimodal protein-shell microspheres as cancer imaging contrast agents. Mol Imaging Biol 14(1):17–24CrossRefGoogle Scholar
  135. 135.
    Avivi S, Gedanken A (2002) S–S bonds are not required for the sonochemical formation of proteinaceous microspheres: the case of streptavidin. Biochem J 366(Pt 3):705–707CrossRefGoogle Scholar
  136. 136.
    Dibbern EM, Toublan FJJ, Suslick KS (2006) Formation and characterization of polyglutamate core-shell microspheres. J Am Chem Soc 128(20):6540–6541. doi: 10.1021/ja058198g CrossRefGoogle Scholar
  137. 137.
    Francesko A, Fernandes MM, Perelshtein I, Benisvy-Aharonovich E, Gedanken A, Tzanov T (2014) One-step sonochemical preparation of redox-responsive nanocapsules for glutathione mediated RNA release. J Mater Chem B 2:6020–6029CrossRefGoogle Scholar
  138. 138.
    Nazari AM, Cox PW, Waters KE (2014) Copper ion removal from dilute solutions using ultrasonically synthesised BSA- and EWP-coated air bubbles. Sep Purif Technol 132(C):218–225CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations