Topics in Current Chemistry

, 374:9 | Cite as

Bioorthogonal Chemistry—Introduction and Overview

Review
Part of the following topical collections:
  1. Cycloadditions in Bioorthogonal Chemistry

Abstract

Bioorthogonal chemistry has emerged as a new powerful tool that facilitates the study of structure and function of biomolecules in their native environment. A wide variety of bioorthogonal reactions that can proceed selectively and efficiently under physiologically relevant conditions are now available. The common features of these chemical reactions include: fast kinetics, tolerance to aqueous environment, high selectivity and compatibility with naturally occurring functional groups. The design and development of new chemical transformations in this direction is an important step to meet the growing demands of chemical biology. This chapter aims to introduce the reader to the field by providing an overview on general principles and strategies used in bioorthogonal chemistry. Special emphasis is given to cycloaddition reactions, namely to 1,3-dipolar cycloadditions and Diels–Alder reactions, as chemical transformations that play a predominant role in modern bioconjugation chemistry. The recent advances have established these reactions as an invaluable tool in modern bioorthogonal chemistry. The key aspects of the methodology as well as future outlooks in the field are discussed.

Keywords

Bioorthogonal reactions Click chemistry Biomolecule labeling 1,3-dipolar cycloaddition Diels–Alder reaction 

References

  1. 1.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CrossRefGoogle Scholar
  2. 2.
    Dedecker P, De Schryver FC, Hofkens J (2013) Fluorescent proteins: shine on, you crazy diamond. J Am Chem Soc 135(7):2387–2402. doi: 10.1021/ja309768d CrossRefGoogle Scholar
  3. 3.
    Nienhaus K, Nienhaus GU (2014) Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev 43(4):1088–1106. doi: 10.1039/c3cs60171d CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Hang HC, Yu C, Kato DL, Bertozzi CR (2003) A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. P Natl Acad Sci USA 100(25):14846–14851. doi: 10.1073/pnas.2335201100 CrossRefGoogle Scholar
  6. 6.
    Rideout D, Calogeropoulou T, Jaworski J, McCarthy M (1990) Synergism through direct covalent bonding between agents: a strategy for rational design of chemotherapeutic combinations. Biopolymers 29(1):247–262. doi: 10.1002/bip.360290129 CrossRefGoogle Scholar
  7. 7.
    Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281(5374):269–272. doi: 10.1126/science.281.5374.269 CrossRefGoogle Scholar
  8. 8.
    Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1(1):13–21. doi: 10.1038/nchembio0605-13 CrossRefGoogle Scholar
  9. 9.
    Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48(38):6974–6998. doi: 10.1002/anie.200900942 CrossRefGoogle Scholar
  10. 10.
    Merkel M, Peewasan K, Arndt S, Ploschik D, Wagenknecht HA (2015) Copper-free postsynthetic labeling of nucleic acids by means of bioorthogonal reactions. ChemBioChem 16(11):1541–1553. doi: 10.1002/cbic.201500199 CrossRefGoogle Scholar
  11. 11.
    Tang W, Becker ML (2014) “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem Soc Rev 43(20):7013–7039. doi: 10.1039/c4cs00139g CrossRefGoogle Scholar
  12. 12.
    Hocek M (2014) Synthesis of base-modified 2’-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J Org Chem 79(21):9914–9921. doi: 10.1021/jo5020799 CrossRefGoogle Scholar
  13. 13.
    Davis L, Chin JW (2012) Designer proteins: applications of genetic code expansion in cell biology. Nat Rev Mol Cell Bio 13(3):168–182. doi: 10.1038/nrm3286 CrossRefGoogle Scholar
  14. 14.
    Dumas A, Lercher L, Spicer CD, Davis BG (2015) Designing logical codon reassignment—expanding the chemistry in biology. Chem Sci 6(1):50–69. doi: 10.1039/c4sc01534g CrossRefGoogle Scholar
  15. 15.
    Du J, Meledeo MA, Wang ZY, Khanna HS, Paruchuri VDP, Yarema KJ (2009) Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19(12):1382–1401. doi: 10.1093/glycob/cwp115 CrossRefGoogle Scholar
  16. 16.
    Jao CY, Roth M, Welti R, Salic A (2009) Metabolic labeling and direct imaging of choline phospholipids in vivo. P Natl Acad Sci USA 106(36):15332–15337. doi: 10.1073/pnas.0907864106 CrossRefGoogle Scholar
  17. 17.
    Rieder U, Luedtke NW (2014) Alkene-Tetrazine ligation for imaging cellular DNA. Angew Chem Int Ed 53(35):9168–9172. doi: 10.1002/anie.201403580 CrossRefGoogle Scholar
  18. 18.
    Shieh P, Siegrist MS, Cullen AJ, Bertozzi CR (2014) Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes. P Natl Acad Sci USA 111(15):5456–5461. doi: 10.1073/pnas.1322727111 CrossRefGoogle Scholar
  19. 19.
    Huisgen R (1963) 1,3-dipolar cycloadditions. past and future. Angew Chem Int Ed 2(10):565–598. doi: 10.1002/anie.196305651 CrossRefGoogle Scholar
  20. 20.
    Najera C, Sansano JM (2009) 1,3-Dipolar cycloadditions: applications to the synthesis of antiviral agents. Org Biomol Chem 7(22):4567–4581. doi: 10.1039/b913066g CrossRefGoogle Scholar
  21. 21.
    Padwa A, Pearson WH (2002) Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products. Chem Heterocylcl Comp 59: John Wiley & Sons, IncGoogle Scholar
  22. 22.
    Pearson WH (2002) Alkaloid synthesis via [3 + 2] cycloadditions. Pure Appl Chem 74(8):1339–1347. doi: 10.1351/pac200274081339 CrossRefGoogle Scholar
  23. 23.
    Ess DH, Houk KN (2008) Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. J Am Chem Soc 130(31):10187–10198. doi: 10.1021/ja800009z CrossRefGoogle Scholar
  24. 24.
    Butler RN, Cunningham WJ, Coyne AG, Burke LA (2004) The influence of water on the rates of 1,3-dipolar cycloaddition reactions: trigger points for exponential rate increases in water-organic solvent mixtures. Water-super versus water-normal dipolarophiles. J Am Chem Soc 126(38):11923–11929. doi: 10.1021/ja040119y CrossRefGoogle Scholar
  25. 25.
    Michael A (1893) Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester. J Prakt Chem 48:94–95. doi: 10.1002/prac.18930480114 CrossRefGoogle Scholar
  26. 26.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::Aid-Anie2596>3.0.Co;2-4 CrossRefGoogle Scholar
  27. 27.
    Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1-3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064. doi: 10.1021/jo011148j CrossRefGoogle Scholar
  28. 28.
    Worrell BT, Malik JA, Fokin VV (2013) Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science 340(6131):457–460. doi: 10.1126/science.1229506 CrossRefGoogle Scholar
  29. 29.
    Lahann J (2009) Click chemistry for biotechnology and materials science. Wiley, Hoboken. doi: 10.1002/9780470748862 CrossRefGoogle Scholar
  30. 30.
    El-Sagheer AH, Brown T (2010) Click chemistry with DNA. Chem Soc Rev 39(4):1388–1405. doi: 10.1039/b901971p CrossRefGoogle Scholar
  31. 31.
    Lallana E, Riguera R, Fernandez-Megia E (2011) Reliable and efficient procedures for the conjugation of biomolecules through huisgen azide-alkyne cycloadditions. Angew Chem Int Ed 50(38):8794–8804. doi: 10.1002/anie.201101019 CrossRefGoogle Scholar
  32. 32.
    Hanni KD, Leigh DA (2010) The application of CuAAC ‘click’ chemistry to catenane and rotaxane synthesis. Chem Soc Rev 39(4):1240–1251. doi: 10.1039/b901974j CrossRefGoogle Scholar
  33. 33.
    Ganesh V, Sudhir VS, Kundu T, Chandrasekaran S (2011) 10 years of click chemistry: synthesis and applications of ferrocene-derived triazoles. Chem-Asian J 6(10):2670–2694. doi: 10.1002/asia.201100408 CrossRefGoogle Scholar
  34. 34.
    Johnson RP, John JV, Kim I (2013) Recent developments in polymer-block-polypeptide and protein-polymer bioconjugate hybrid materials. Eur Polym J 49(10):2925–2948. doi: 10.1016/j.eurpolymj.2013.04.017 CrossRefGoogle Scholar
  35. 35.
    Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA (2008) Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med Res Rev 28(2):278–308. doi: 10.1002/med.20107 CrossRefGoogle Scholar
  36. 36.
    Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click chemistry for drug development and diverse chemical-biology applications. Chem Rev 113(7):4905–4979. doi: 10.1021/cr200409f CrossRefGoogle Scholar
  37. 37.
    Kennedy DC, McKay CS, Legault MCB, Danielson DC, Blake JA, Pegoraro AF, Stolow A, Mester Z, Pezacki JP (2011) Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J Am Chem Soc 133(44):17993–18001. doi: 10.1021/ja2083027 CrossRefGoogle Scholar
  38. 38.
    Besanceney-Webler C, Jiang H, Zheng TQ, Feng L, del Amo DS, Wang W, Klivansky LM, Marlow FL, Liu Y, Wu P (2011) Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew Chem Int Ed 50(35):8051–8056. doi: 10.1002/anie.201101817 CrossRefGoogle Scholar
  39. 39.
    Wang W, Hong SL, Tran A, Jiang H, Triano R, Liu Y, Chen X, Wu P (2011) Sulfated ligands for the copper(I)-catalyzed azide-alkyne cycloaddition. Chem-Asian J 6(10):2796–2802. doi: 10.1002/asia.201100385 CrossRefGoogle Scholar
  40. 40.
    Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of blomolecules in living systems. J Am Chem Soc 126(46):15046–15047. doi: 10.1021/ja0449981 CrossRefGoogle Scholar
  41. 41.
    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Copper-free click chemistry for dynamic in vivo imaging. P Natl Acad Sci USA 104(43):16793–16797. doi: 10.1073/pnas.0707090104 CrossRefGoogle Scholar
  42. 42.
    Laughlin ST, Bertozzi CR (2009) In vivo imaging of caenorhabditis elegans Glycans. ACS Chem Biol 4(12):1068–1072. doi: 10.1021/cb900254y CrossRefGoogle Scholar
  43. 43.
    Gutsmiedl K, Wirges CT, Ehmke V, Carell T (2009) Copper-free “click” modification of DNA via nitrile oxide-norbornene 1,3-dipolar cycloaddition. Org Lett 11(11):2405–2408. doi: 10.1021/ol9005322 CrossRefGoogle Scholar
  44. 44.
    Jawalekar AM, Reubsaet E, Rutjes FPJT, van Delft FL (2011) Synthesis of isoxazoles by hypervalent iodine-induced cycloaddition of nitrile oxides to alkynes. Chem Commun 47(11):3198–3200. doi: 10.1039/c0cc04646a CrossRefGoogle Scholar
  45. 45.
    Sanders BC, Friscourt F, Ledin PA, Mbua NE, Arumugam S, Guo J, Boltje TJ, Popik VV, Boons GJ (2011) Metal-free sequential [3 + 2]-dipolar cycloadditions using cyclooctynes and 1,3-dipoles of different reactivity. J Am Chem Soc 133(4):949–957. doi: 10.1021/ja1081519 CrossRefGoogle Scholar
  46. 46.
    Mckay CS, Moran J, Pezacki JP (2010) Nitrones as dipoles for rapid strain-promoted 1,3-dipolar cycloadditions with cyclooctynes. Chem Commun 46(6):931–933. doi: 10.1039/b921630h CrossRefGoogle Scholar
  47. 47.
    McKay CS, Chigrinova M, Blake JA, Pezacki JP (2012) Kinetics studies of rapid strain-promoted [3 + 2]-cycloadditions of nitrones with biaryl-aza-cyclooctynone. Org Biomol Chem 10(15):3066–3070. doi: 10.1039/c2ob07165g CrossRefGoogle Scholar
  48. 48.
    MacKenzie DA, Pezacki JP (2014) Kinetics studies of rapid strain-promoted [3 + 2] cycloadditions of nitrones with bicyclo[6.1.0]nonyne. Can J Chem 92(4):337–340. doi: 10.1139/cjc-2013-0577 CrossRefGoogle Scholar
  49. 49.
    McKay CS, Blake JA, Cheng J, Danielson DC, Pezacki JP (2011) Strain-promoted cycloadditions of cyclic nitrones with cyclooctynes for labeling human cancer cells. Chem Commun 47(36):10040–10042. doi: 10.1039/c1cc13808a CrossRefGoogle Scholar
  50. 50.
    Ning XH, Temming RP, Dommerholt J, Guo J, Ania DB, Debets MF, Wolfert MA, Boons GJ, van Delft FL (2010) Protein modification by strain-promoted alkyne-nitrone cycloaddition. Angew Chem Int Ed 49(17):3065–3068. doi: 10.1002/anie.201000408 CrossRefGoogle Scholar
  51. 51.
    Temming RP, Eggermont L, van Eldijk MB, van Hest JCM, van Delft FL (2013) N-terminal dual protein functionalization by strain-promoted alkyne-nitrone cycloaddition. Org Biomol Chem 11(17):2772–2779. doi: 10.1039/c3ob00043e CrossRefGoogle Scholar
  52. 52.
    Wang XS, Lee YJ, Liu WSR (2014) The nitrilimine-alkene cycloaddition is an ultra rapid click reaction. Chem Commun 50(24):3176–3179. doi: 10.1039/c3cc48682f CrossRefGoogle Scholar
  53. 53.
    Wang YZ, Vera CIR, Lin Q (2007) Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition. Org Lett 9(21):4155–4158. doi: 10.1021/ol7017328 CrossRefGoogle Scholar
  54. 54.
    Song W, Wang Y, Qu J, Madden MM, Lin Q (2008) A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. Angew Chem Int Ed 47(15):2832–2835. doi: 10.1002/anie.200705805 CrossRefGoogle Scholar
  55. 55.
    Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T (2012) A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. Angew Chem Int Ed 51(18):4466–4469. doi: 10.1002/anie.201109252 CrossRefGoogle Scholar
  56. 56.
    Ramil CP, Lin Q (2014) Photoclick chemistry: a fluorogenic light-triggered in vivo ligation reaction. Curr Opin Chem Biol 21:89–95. doi: 10.1016/j.cbpa.2014.05.024 CrossRefGoogle Scholar
  57. 57.
    Lim RKV, Lin Q (2011) Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. Acc Chem Res 44(9):828–839. doi: 10.1021/ar200021p CrossRefGoogle Scholar
  58. 58.
    Padwa A, Smolanof J (1971) Photocycloaddition of arylazirenes with electron-deficient olefins. J Am Chem Soc 93(2):548–550. doi: 10.1021/ja00731a056 CrossRefGoogle Scholar
  59. 59.
    Lim RKV, Lin Q (2010) Azirine ligation: fast and selective protein conjugation via photoinduced azirine-alkene cycloaddition. Chem Commun 46(42):7993–7995. doi: 10.1039/c0cc02863k CrossRefGoogle Scholar
  60. 60.
    Huisgen R, Gotthardt H, Grashey R (1962) Reactions of sydnones with alkenes. Angew Chem Int Ed 1(1):49. doi: 10.1002/anie.196200491 CrossRefGoogle Scholar
  61. 61.
    Huisgen R, Grashey R, Gotthardt H, Schmidt R (1962) 1,3-dipolar additions of sydnones to alkynes. a new route into the pyrazole series. Angew Chem Int Ed 1(1):48–49. doi: 10.1002/anie.196200482 CrossRefGoogle Scholar
  62. 62.
    Kolodych S, Rasolofonjatovo E, Chaumontet M, Nevers MC, Creminon C, Taran F (2013) Discovery of chemoselective and biocompatible reactions using a high-throughput immunoassay screening. Angew Chem Int Ed 52(46):12056–12060. doi: 10.1002/anie.201305645 CrossRefGoogle Scholar
  63. 63.
    Wallace S, Chin JW (2014) Strain-promoted sydnone bicyclo-[6.1.0]-nonyne cycloaddition. Chem Sci 5(5):1742–1744. doi: 10.1039/c3sc53332h CrossRefGoogle Scholar
  64. 64.
    Plougastel L, Koniev O, Specklin S, Decuypere E, Creminon C, Buisson DA, Wagner A, Kolodych S, Taran F (2014) 4-Halogeno-sydnones for fast strain promoted cycloaddition with bicyclo-[6.1.0]-nonyne. Chem Commun 50(66):9376–9378. doi: 10.1039/c4cc03816a CrossRefGoogle Scholar
  65. 65.
    Myers EL, Raines RT (2009) A phosphine-mediated conversion of azides into diazo compounds. Angew Chem Int Ed 48(13):2359–2363. doi: 10.1002/anie.200804689 CrossRefGoogle Scholar
  66. 66.
    McGrath NA, Raines RT (2012) Diazo compounds as highly tunable reactants in 1,3-dipolar cycloaddition reactions with cycloalkynes. Chem Sci 3(11):3237–3240. doi: 10.1039/c2sc20806g CrossRefGoogle Scholar
  67. 67.
    Andersen KA, Aronoff MR, McGrath NA, Raines RT (2015) Diazo groups endure metabolism and enable chemoselectivity in cellulo. J Am Chem Soc 137(7):2412–2415. doi: 10.1021/ja5095815 CrossRefGoogle Scholar
  68. 68.
    Friscourt F, Fahrni CJ, Boons G-J (2015) Fluorogenic strain-promoted alkyne-diazo cycloadditions. Chem A Eur J 21(40):13996–14001. doi: 10.1002/chem.201502242 CrossRefGoogle Scholar
  69. 69.
    Diels O, Alder K (1928) Synthesen in der hydroaromatischen Reihe. Justus Liebigs Annalen der Chemie 460(1):98–122. doi: 10.1002/jlac.19284600106 CrossRefGoogle Scholar
  70. 70.
    Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G (2002) The Diels-Alder reaction in total synthesis. Angew Chem Int Ed 41(10):1668–1698. doi: 10.1002/1521-3773(20020517)41:10<1668::Aid-Anie1668>3.0.Co;2-Z CrossRefGoogle Scholar
  71. 71.
    Rideout DC, Breslow R (1980) Hydrophobic acceleration of diels-alder reactions. J Am Chem Soc 102(26):7816–7817. doi: 10.1021/ja00546a048 CrossRefGoogle Scholar
  72. 72.
    Otto S, Blokzijl W, Engberts JBFN (1994) Diels-alder reactions in water—effects of hydrophobicity and hydrogen-bonding. J Org Chem 59(18):5372–5376. doi: 10.1021/jo00097a045 CrossRefGoogle Scholar
  73. 73.
    Chalker JM, Bernardes GJL, Lin YA, Davis BG (2009) Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem-Asian J 4(5):630–640. doi: 10.1002/asia.200800427 CrossRefGoogle Scholar
  74. 74.
    Seelig B, Jaschke A (1997) Site-specific modification of enzymatically synthesized RNA: transcription initiation and Diels-Alder reaction. Tetrahedron Lett 38(44):7729–7732. doi: 10.1016/S0040-4039(97)10151-4 CrossRefGoogle Scholar
  75. 75.
    Hill KW, Taunton-Rigby J, Carter JD, Kropp E, Vagle K, Pieken W, McGee DPC, Husar GM, Leuck M, Anziano DJ, Sebesta DP (2001) Diels-Alder bioconjugation of diene-modified oligonucleotides. J Org Chem 66(16):5352–5358. doi: 10.1021/jo0100190 CrossRefGoogle Scholar
  76. 76.
    de Araujo AD, Palomo JM, Cramer J, Kohn M, Schroder H, Wacker R, Niemeyer C, Alexandrov K, Waldmann H (2006) Diels-Alder ligation and surface immobilization of proteins. Angew Chem Int Ed 45(2):296–301. doi: 10.1002/anie.200502266 CrossRefGoogle Scholar
  77. 77.
    Marchan V, Ortega S, Pulido D, Pedroso E, Grandas A (2006) Diels-Alder cycloadditions in water for the straightforward preparation of peptide-oligonucleotide conjugates. Nucleic Acids Res 34(3):e24. doi: 10.1093/nar/gnj020 CrossRefGoogle Scholar
  78. 78.
    Li Q, Dong T, Liu X, Lei X (2013) A bioorthogonal ligation enabled by click cycloaddition of o-Quinolinone Quinone methide and vinyl thioether. J Am Chem Soc 135(13):4996–4999. doi: 10.1021/ja401989p CrossRefGoogle Scholar
  79. 79.
    Carboni RA, Lindsey RV (1959) Reactions of tetrazines with unsaturated compounds. A new synthesis of pyridazines. J Am Chem Soc 81(16):4342–4346. doi: 10.1021/ja01525a060 CrossRefGoogle Scholar
  80. 80.
    Boger DL (1986) Diels-Alder reactions of heterocyclic aza dienes, Scope and applications. Chem Rev 86(5):781–793. doi: 10.1021/cr00075a004 CrossRefGoogle Scholar
  81. 81.
    Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130(41):13518–13519. doi: 10.1021/ja8053805 CrossRefGoogle Scholar
  82. 82.
    Devaraj NK, Weissleder R, Hilderbrand SA (2008) Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjugate Chem 19(12):2297–2299. doi: 10.1021/bc8004446 CrossRefGoogle Scholar
  83. 83.
    Chen WX, Wang DZ, Dai CF, Hamelberg D, Wang BH (2012) Clicking 1,2,4,5-tetrazine and cyclooctynes with tunable reaction rates. Chem Commun 48(12):1736–1738. doi: 10.1039/c2cc16716f CrossRefGoogle Scholar
  84. 84.
    Patterson DM, Nazarova LA, Xie B, Kamber DN, Prescher JA (2012) Functionalized cyclopropenes as bioorthogonal chemical reporters. J Am Chem Soc 134(45):18638–18643. doi: 10.1021/ja3060436 CrossRefGoogle Scholar
  85. 85.
    Yang J, Seckute J, Cole CM, Devaraj NK (2012) Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. Angew Chem Int Ed 51(30):7476–7479. doi: 10.1002/anie.201202122 CrossRefGoogle Scholar
  86. 86.
    Engelsma SB, Willems LI, van Paaschen CE, van Kasteren SI, van der Marel GA, Overkleeft HS, Filippov DV (2014) Acylazetine as a dienophile in bioorthogonal inverse electron-demand diels-alder ligation. Org Lett 16(10):2744–2747. doi: 10.1021/ol501049c CrossRefGoogle Scholar
  87. 87.
    Knall AC, Slugovc C (2013) Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem Soc Rev 42(12):5131–5142. doi: 10.1039/c3cs60049a CrossRefGoogle Scholar
  88. 88.
    Kämpchen T, Massa W, Overheu W, Schmidt R, Seitz G (1982) Zur Kenntnis von reaktionen des 1,2,4,5-tetrazin-3,6-dicarbonsäure-dimethylesters mit nucleophilen. Chem Ber 115(2):683–694. doi: 10.1002/cber.19821150228 CrossRefGoogle Scholar
  89. 89.
    Kamber DN, Liang Y, Blizzard RJ, Liu F, Mehl RA, Houk KN, Prescher JA (2015) 1,2,4-triazines are versatile bioorthogonal reagents. J Am Chem Soc 137(26):8388–8391. doi: 10.1021/jacs.5b05100 CrossRefGoogle Scholar
  90. 90.
    Horner KA, Valette NM, Webb ME (2015) Strain-promoted reaction of 1,2,4-triazines with bicyclononynes. istry. Chem A Eur J 21(41):14376–14381. doi: 10.1002/chem.201502397 CrossRefGoogle Scholar
  91. 91.
    Patterson DM, Nazarova LA, Prescher JA (2014) Finding the right (Bioorthogonal) chemistry. ACS Chem Biol 9(3):592–605. doi: 10.1021/cb400828a CrossRefGoogle Scholar
  92. 92.
    Beal DM, Jones LH (2012) Molecular scaffolds using multiple orthogonal conjugations: applications in chemical biology and drug discovery. Angew Chem Int Ed 51(26):6320–6326. doi: 10.1002/anie.201200002 CrossRefGoogle Scholar
  93. 93.
    Tunca U (2014) Orthogonal multiple click reactions in synthetic polymer chemistry. J Polym Sci Pol Chem 52(22):3147–3165. doi: 10.1002/pola.27379 CrossRefGoogle Scholar
  94. 94.
    Greiss S, Chin JW (2011) Expanding the genetic code of an animal. J Am Chem Soc 133(36):14196–14199. doi: 10.1021/ja2054034 CrossRefGoogle Scholar
  95. 95.
    Bianco A, Townsley FM, Greiss S, Lang K, Chin JW (2012) Expanding the genetic code of Drosophila melanogaster. Nat Chem Biol 8(9):748–750. doi: 10.1038/Nchembio.1043 CrossRefGoogle Scholar
  96. 96.
    Chang PV, Dube DH, Sletten EM, Bertozzi CR (2010) A Strategy for the selective imaging of glycans using caged metabolic precursors. J Am Chem Soc 132(28):9516–9518. doi: 10.1021/ja101080y CrossRefGoogle Scholar
  97. 97.
    King M, Wagner A (2014) Developments in the field of bioorthogonal bond forming reactions-past and present trends. Bioconjugate Chem 25(5):825–839. doi: 10.1021/bc500028d CrossRefGoogle Scholar
  98. 98.
    McKay CS, Finn MG (2014) Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol 21(9):1075–1101. doi: 10.1016/j.chembiol.2014.09.002 CrossRefGoogle Scholar
  99. 99.
    Spicer CD, Davis BG (2014) Selective chemical protein modification. Nat Commun. doi: 10.1038/ncomms5740 Google Scholar
  100. 100.
    Boutureira O, Bernardes GJL (2015) Advances in chemical protein modification. Chem Rev 115(5):2174–2195. doi: 10.1021/cr500399p CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Chemistry and PharmacyLudwig-Maximilians University MunichMunichGermany
  2. 2.Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations