Topics in Current Chemistry

, 374:8 | Cite as

DNA Sequencing in Cultural Heritage

Review
Part of the following topical collections:
  1. Analytical Chemistry for Cultural Heritage

Abstract

During the last three decades, DNA analysis on degraded samples revealed itself as an important research tool in anthropology, archaeozoology, molecular evolution, and population genetics. Application on topics such as determination of species origin of prehistoric and historic objects, individual identification of famous personalities, characterization of particular samples important for historical, archeological, or evolutionary reconstructions, confers to the paleogenetics an important role also for the enhancement of cultural heritage. A really fast improvement in methodologies in recent years led to a revolution that permitted recovering even complete genomes from highly degraded samples with the possibility to go back in time 400,000 years for samples from temperate regions and 700,000 years for permafrozen remains and to analyze even more recent material that has been subjected to hard biochemical treatments. Here we propose a review on the different methodological approaches used so far for the molecular analysis of degraded samples and their application on some case studies.

Keywords

Ancient DNA Paleogenetics New generation sequencing Cultural heritage 

References

  1. 1.
    Paabo S (1985) Molecular-cloning of ancient egyptian mummy DNA. Nature 314(6012):644–645CrossRefGoogle Scholar
  2. 2.
    Higuchi R et al (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–284CrossRefGoogle Scholar
  3. 3.
    Meyer M et al (2014) A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505(7483):403–406CrossRefGoogle Scholar
  4. 4.
    Orlando L et al (2013) Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499(7456):74–78CrossRefGoogle Scholar
  5. 5.
    Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715CrossRefGoogle Scholar
  6. 6.
    Paabo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci USA 86(6):1939–1943CrossRefGoogle Scholar
  7. 7.
    Briggs AW et al (2007) Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci USA 104(37):14616–14621CrossRefGoogle Scholar
  8. 8.
    Paabo S et al (2004) Genetic analyses from ancient DNA. Ann Rev Genet 38:645–679CrossRefGoogle Scholar
  9. 9.
    Hansen A et al (2001) Statistical evidence for miscoding lesions in ancient DNA templates. Mol Biol Evol 18(2):262–265CrossRefGoogle Scholar
  10. 10.
    Gilbert MT et al (2003) Characterization of genetic miscoding lesions caused by postmortem damage. Am J Hum Genet 72(1):48–61CrossRefGoogle Scholar
  11. 11.
    Sawyer S et al (2012) Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One 7(3):e34131CrossRefGoogle Scholar
  12. 12.
    Ginolhac A et al (2011) mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27(15):2153–2155CrossRefGoogle Scholar
  13. 13.
    Skoglund P et al (2014) Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc Natl Acad Sci USA 111(6):2229–2234CrossRefGoogle Scholar
  14. 14.
    Knapp M, Lalueza-Fox C, Hofreiter M (2015) Re-inventing ancient human DNA. Investig Genet 6:4CrossRefGoogle Scholar
  15. 15.
    Lalueza-Fox C et al (2007) A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 318(5855):1453–1455CrossRefGoogle Scholar
  16. 16.
    Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. Biotechniques 42(3):343–352CrossRefGoogle Scholar
  17. 17.
    Rohland N, Hofreiter M (2007) Ancient DNA extraction from bones and teeth. Nat Protoc 2(7):1756–1762CrossRefGoogle Scholar
  18. 18.
    Dabney J et al (2013) Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci USA 110(39):15758–15763CrossRefGoogle Scholar
  19. 19.
    Gamba C et al. (2015) Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol Ecol Resour. doi: 10.1111/1755-0998.12470 Google Scholar
  20. 20.
    Cigliero SD, Edalucci E, Fattorini P (2011) DNA extraction from blood and forensic samples. In: Stanta G (ed) Guidelines for molecular analysis in archive tissues. Springer, Berlin, Heidelberg, pp 45–54CrossRefGoogle Scholar
  21. 21.
    Pilli E et al (2014) Pet fur or fake fur? A forensic approach. Investig Genet 5:7CrossRefGoogle Scholar
  22. 22.
    Kistler L (2012) Ancient DNA extraction from plants. Methods Mol Biol 840:71–79CrossRefGoogle Scholar
  23. 23.
    Hekkala E et al (2011) An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile. Mol Ecol 20(20):4199–4215CrossRefGoogle Scholar
  24. 24.
    Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289(5482):1139CrossRefGoogle Scholar
  25. 25.
    Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymoly 155:335–350CrossRefGoogle Scholar
  26. 26.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467CrossRefGoogle Scholar
  27. 27.
    Hofreiter M et al (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29(23):4793–4799CrossRefGoogle Scholar
  28. 28.
    Bower MA et al (2005) How many clones need to be sequenced from a single forensic or ancient DNA sample in order to determine a reliable consensus sequence? Nucleic Acids Res 33(8):2549–2556CrossRefGoogle Scholar
  29. 29.
    Poinar HN et al (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311(5759):392–394CrossRefGoogle Scholar
  30. 30.
    Green RE et al (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444(7117):330–336CrossRefGoogle Scholar
  31. 31.
    Noonan JP et al (2006) Sequencing and analysis of Neanderthal genomic DNA. Science 314(5802):1113–1118CrossRefGoogle Scholar
  32. 32.
    Schloss JA (2008) How to get genomes at one ten-thousandth the cost. Nat Biotechnol 26(10):1113–1115CrossRefGoogle Scholar
  33. 33.
    Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46CrossRefGoogle Scholar
  34. 34.
    Head SR et al (2014) Library construction for next-generation sequencing: overviews and challenges. Biotechniques 56(2):61–64, 66, 68, passimGoogle Scholar
  35. 35.
    Meyer M, Kircher M (2010) Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010(6): p. pdb prot5448Google Scholar
  36. 36.
    Bennett EA et al (2014) Library construction for ancient genomics: single strand or double strand? Biotechniques 56(6):289–290, 292–296, 298, passimGoogle Scholar
  37. 37.
    Gansauge MT, Meyer M (2013) Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc 8(4):737–748CrossRefGoogle Scholar
  38. 38.
    Briggs AW et al. (2010) Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res 38(6):e87CrossRefGoogle Scholar
  39. 39.
    Rohland N et al (2015) Partial uracil—DNA—glycosylase treatment for screening of ancient DNA. Philos Trans R Soc B Biol Sci 370(1660):20130624CrossRefGoogle Scholar
  40. 40.
    Gansauge MT, Meyer M (2014) Selective enrichment of damaged DNA molecules for ancient genome sequencing. Genome Res 24(9):1543–1549CrossRefGoogle Scholar
  41. 41.
    Maricic T, Whitten M, Paabo S (2010) Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One 5(11):e14004CrossRefGoogle Scholar
  42. 42.
    Burbano HA et al (2010) Targeted investigation of the Neandertal genome by array-based sequence capture. Science 328(5979):723–725CrossRefGoogle Scholar
  43. 43.
    Briggs AW et al (2009) Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325(5938):318–321CrossRefGoogle Scholar
  44. 44.
    Devault AM et al (2014) Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array. Sci Rep 4:4245CrossRefGoogle Scholar
  45. 45.
    Bos KI et al (2011) A draft genome of Yersinia pestis from victims of the Black Death. Nature 478(7370):506–510CrossRefGoogle Scholar
  46. 46.
    Bos KI et al (2014) Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514(7523):494–497CrossRefGoogle Scholar
  47. 47.
    Haak W et al (2015) Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522(7555):207–211CrossRefGoogle Scholar
  48. 48.
    Castellano S et al (2014) Patterns of coding variation in the complete exomes of three Neandertals. Proc Natl Acad Sci USA 111(18):6666–6671CrossRefGoogle Scholar
  49. 49.
    Fu Q et al (2013) DNA analysis of an early modern human from Tianyuan Cave, China. Proc Natl Acad Sci USA 110(6):2223–2227CrossRefGoogle Scholar
  50. 50.
    Carpenter ML et al (2013) Pulling out the 1 %: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am J Hum Genet 93(5):852–864CrossRefGoogle Scholar
  51. 51.
    Enk JM et al (2014) Ancient whole genome enrichment using baits built from modern DNA. Mol Biol Evol 31(5):1292–1294CrossRefGoogle Scholar
  52. 52.
    Avila-Arcos MC et al (2011) Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA. Sci Rep 1:74CrossRefGoogle Scholar
  53. 53.
    Camacho C et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:421CrossRefGoogle Scholar
  54. 54.
    Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948CrossRefGoogle Scholar
  55. 55.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797CrossRefGoogle Scholar
  56. 56.
    Katoh K, Standley DM (2014) MAFFT: iterative refinement and additional methods. Methods Mol Biol 1079:131–146CrossRefGoogle Scholar
  57. 57.
    Kircher M (2012) Analysis of high-throughput ancient DNA sequencing data. In: Shapiro B, Hofreiter M (eds) Ancient DNA: methods and protocols, vol 840. Springer, New York, pp 197–228CrossRefGoogle Scholar
  58. 58.
    Orlando L, Gilbert MT, Willerslev E (2015) Reconstructing ancient genomes and epigenomes. Nat Rev Genet 16(7):395–408CrossRefGoogle Scholar
  59. 59.
    Jonsson H et al (2013) mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29(13):1682–1684CrossRefGoogle Scholar
  60. 60.
    Green RE et al (2010) A draft sequence of the Neandertal genome. Science 328(5979):710–722CrossRefGoogle Scholar
  61. 61.
    Sanchez-Quinto F et al (2012) Genomic affinities of two 7000-year-old Iberian hunter-gatherers. Curr Biol 22(16):1494–1499CrossRefGoogle Scholar
  62. 62.
    Fu Q et al (2013) A revised timescale for human evolution based on ancient mitochondrial genomes. Curr Biol 23(7):553–559CrossRefGoogle Scholar
  63. 63.
    Green RE et al (2009) The Neandertal genome and ancient DNA authenticity. EMBO J 28(17):2494–2502CrossRefGoogle Scholar
  64. 64.
    Rasmussen M et al (2011) An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334(6052):94–98CrossRefGoogle Scholar
  65. 65.
    Schubert M et al (2014) Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat Protoc 9(5):1056–1082CrossRefGoogle Scholar
  66. 66.
    Lindgreen S (2012) AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res Notes 5:337CrossRefGoogle Scholar
  67. 67.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760CrossRefGoogle Scholar
  68. 68.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359CrossRefGoogle Scholar
  69. 69.
  70. 70.
    Renaud G et al (2015) Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol 16(1):224CrossRefGoogle Scholar
  71. 71.
    Burger J, Hummel S, Herrmann B (2000) Palaeogenetics and cultural heritage. Species determination and STR-genotyping from ancient DNA in art and artefacts. Thermochim Acta 365(1–2):141–146CrossRefGoogle Scholar
  72. 72.
    Marota I et al (2002) DNA decay rate in papyri and human remains from Egyptian archaeological sites. Am J Phys Anthropol 117(4):310–318CrossRefGoogle Scholar
  73. 73.
    Poulakakis N et al (2007) Ancient DNA and the genetic signature of ancient Greek manuscripts. J Archaeol Sci 34(5):675–680CrossRefGoogle Scholar
  74. 74.
    Vuissoz A et al (2007) The survival of PCR-amplifiable DNA in cow leather. J Archaeol Sci 34(5):823–829CrossRefGoogle Scholar
  75. 75.
    Merheb M et al (2016) Mitochondrial DNA, restoring Beethovens music. Mitochondrial DNA 27(1):355–359CrossRefGoogle Scholar
  76. 76.
    Schlumbaum A et al (2010) Ancient DNA, a Neolithic legging from the Swiss Alps and the early history of goat. J Archaeol Sci 37(6):1247–1251CrossRefGoogle Scholar
  77. 77.
    Brandt LO et al (2011) Characterising the potential of sheep wool for ancient DNA analyses. Archaeol Anthropol Sci 3(2):209–221CrossRefGoogle Scholar
  78. 78.
    Shanks OC et al (2005) DNA from ancient stone tools and bones excavated at Bugas-Holding, Wyoming. J Archaeol Sci 32(1):27–38CrossRefGoogle Scholar
  79. 79.
    Pangallo D et al (2010) Identification of animal skin of historical parchments by polymerase chain reaction (PCR)-based methods. J Archaeol Sci 37(6):1202–1206CrossRefGoogle Scholar
  80. 80.
    Campana MG et al (2010) A Flock of sheep, goats and cattle: ancient DNA analysis reveals complexities of historical parchment manufacture. J Archaeol Sci 37(6):1317–1325CrossRefGoogle Scholar
  81. 81.
    Teasdale MD et al (2015) Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing. Philos Trans R Soc B Biol Sci 370(1660):20130379CrossRefGoogle Scholar
  82. 82.
    Albertini E et al (2011) Tracing the biological origin of animal glues used in paintings through mitochondrial DNA analysis. Anal Bioanal Chem 399:2987–2995CrossRefGoogle Scholar
  83. 83.
    Cavalieri D et al (2003) Evidence for S. cerevisiae fermentation in ancient wine. J Mol Evol 57(Suppl 1):S226–S232CrossRefGoogle Scholar
  84. 84.
    Walsh S et al (2013) The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci Int Genet 7(1):98–115CrossRefGoogle Scholar
  85. 85.
    King TE et al (2014) Identification of the remains of King Richard III. Nat Commun 5:5631CrossRefGoogle Scholar
  86. 86.
    Olalde I et al (2014) Genomic analysis of the blood attributed to Louis XVI (1754–1793), king of France. Sci Rep 4:4666CrossRefGoogle Scholar
  87. 87.
    Caramelli D et al (2007) Genetic analysis of the skeletal remains attributed to Francesco Petrarca. Forensic Sci Int 173(1):36–40CrossRefGoogle Scholar
  88. 88.
    Vernesi C et al (2001) Genetic characterization of the body attributed to the evangelist Luke. Proc Natl Acad Sci USA 98(23):13460–13463CrossRefGoogle Scholar
  89. 89.
    Ermini L et al (2008) Complete mitochondrial genome sequence of the Tyrolean Iceman. Curr Biol 18(21):1687–1693CrossRefGoogle Scholar
  90. 90.
    Rollo F et al (2006) Fine characterization of the Iceman’s mtDNA haplogroup. Am J Phys Anthropol 130(4):557–564CrossRefGoogle Scholar
  91. 91.
    Keller A et al (2012) New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun 3:698CrossRefGoogle Scholar
  92. 92.
    Rollo F et al (2002) Otzi’s last meals: DNA analysis of the intestinal content of the Neolithic glacier mummy from the Alps. Proc Natl Acad Sci USA 99(20):12594–12599CrossRefGoogle Scholar
  93. 93.
    Lari M et al (2015) The Neanderthal in the karst: first dating, morphometric, and paleogenetic data on the fossil skeleton from Altamura (Italy). J Hum Evol 82:88–94CrossRefGoogle Scholar
  94. 94.
    Gilbert MTP et al (2008) Paleo–Eskimo mtDNA genome reveals matrilineal discontinuity in Greenland. Science 320(5884):1787–1789CrossRefGoogle Scholar
  95. 95.
    Rasmussen M et al (2010) Ancient human genome sequence of an extinct Palaeo–Eskimo. Nature 463(7282):757–762CrossRefGoogle Scholar
  96. 96.
    Sanchez-Quinto F, Lalueza-Fox C (2015) Almost 20 years of Neanderthal palaeogenetics: adaptation, admixture, diversity, demography and extinction. Philos Trans R Soc Lond B Biol Sci 370(1660):20130374CrossRefGoogle Scholar
  97. 97.
    Allentoft ME et al (2015) Population genomics of Bronze Age Eurasia. Nature 522(7555):167–172CrossRefGoogle Scholar
  98. 98.
    Ghirotto S et al (2013) Origins and evolution of the Etruscans’ mtDNA. PLoS One 8(2):e55519CrossRefGoogle Scholar
  99. 99.
    Vai S et al (2015) Genealogical relationships between early medieval and modern inhabitants of Piedmont. PLoS One 10(1):e0116801CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of BiologyUniversity of FlorenceFlorenceItaly

Personalised recommendations