Topics in Current Chemistry

, 374:6 | Cite as

Analytical Approaches Based on Gas Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological Objects

  • Ilaria Bonaduce
  • Erika Ribechini
  • Francesca Modugno
  • Maria Perla Colombini
Review
Part of the following topical collections:
  1. Analytical Chemistry for Cultural Heritage

Abstract

Gas chromatography/mass spectrometry (GC/MS), after appropriate wet chemical sample pre-treatments or pyrolysis, is one of the most commonly adopted analytical techniques in the study of organic materials from cultural heritage objects. Organic materials in archaeological contexts, in classical art objects, or in modern and contemporary works of art may be the same or belong to the same classes, but can also vary considerably, often presenting different ageing pathways and chemical environments. This paper provides an overview of the literature published in the last 10 years on the research based on the use of GC/MS for the analysis of organic materials in artworks and archaeological objects. The latest progresses in advancing analytical approaches, characterising materials and understanding their degradation, and developing methods for monitoring their stability are discussed. Case studies from the literature are presented to examine how the choice of the working conditions and the analytical approaches is driven by the analytical and technical question to be answered, as well as the nature of the object from which the samples are collected.

Keywords

Gas chromatography/mass spectrometry Wet chemical sample pre-treatment Analytical pyrolysis Organic materials Paintings Archaeological objects 

References

  1. 1.
    Mills J, White R (2000) Organic chemistry of museum objects (2nd edn, vol 206), (Conservation and Museology). Routledge, New YorkGoogle Scholar
  2. 2.
    Mills JS (1966) The gas chromatographic examination of paint media. Part I. Fatty acid composition and identification of dried oil films. Stud Conserv 11(2):92–107Google Scholar
  3. 3.
    White R (1984) The characterisation of proteinaceous binders in art objects. Natl Gallery Tech Bull 8:5–14Google Scholar
  4. 4.
    Schilling MR, Khanjian HP (1996) Gas chromatographic analysis of amino acids as ethyl chloroformate derivatives. II. Effects of pigments and accelerated aging on the identification of proteinaceous binding media. J Am Inst Conserv 35:123–144CrossRefGoogle Scholar
  5. 5.
    Bonaduce I, Andreotti A (2009) Py-GC/MS of organic paint binders. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, pp 303–326CrossRefGoogle Scholar
  6. 6.
    Colombini MP et al (2010) Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry. Acc Chem Res 395:715–727CrossRefGoogle Scholar
  7. 7.
    Madariaga JM (2015) Analytical chemistry in the field of cultural heritage. Anal Methods 7(12):4848–4876CrossRefGoogle Scholar
  8. 8.
    Peris-Vicente J et al (2009) Characterization of commercial synthetic resins by pyrolysis-gas chromatography/mass spectrometry: application to modern art and conservation. Anal Chem 81(8):3180–3187CrossRefGoogle Scholar
  9. 9.
    Learner T (2004) Analysis of modern paints. Getty Publication, CanadaGoogle Scholar
  10. 10.
    Edwards HG, Vandenabeele P (2012) Analytical archaeometry: selected topic. RCS Publishing, LondonCrossRefGoogle Scholar
  11. 11.
    Andreotti A, et al (2008) Characterisation of natural organic materials in paintings by GC/MS analytical procedures, in New trends in analytical, environmental and cultural heritage chemistry. In: MP Colombini, L Tassi (eds) Transworld Research Network: Kerala, India. p 491Google Scholar
  12. 12.
    Scalarone D, Chiantore O (2009) Py-GC/MS of natural and synthetic resins. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, p 327CrossRefGoogle Scholar
  13. 13.
    Serpico M, White R (2000) Ancient Egyptian materials and technology. In: Nicholson PT, Shaw I (eds) Oil, fat and wax. Cambridge University Press, pp 390–429Google Scholar
  14. 14.
    Pollard AM, Heron C (1996) Archaeological chemistry. Royal Society of Chemistry, CambridgeGoogle Scholar
  15. 15.
    Evershed RP (2000) Modern analytical methods in art and archaeology. In: Ciliberto E, Spoto G (eds) Biomolecular analysis by organic mass spectrometry. Wiley, Canada, pp 177–239Google Scholar
  16. 16.
    Ribechini E (2009) Direct mass spectrometric techniques: versatile tools to characterise resinous materials. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, pp 77–95Google Scholar
  17. 17.
    Modugno F, Ribechini E (2009) GC/MS in the characterisation of resinous materials. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, pp 215–235CrossRefGoogle Scholar
  18. 18.
    Colombini MP, Modugno F, Ribechini E (2012) Archaeometric data from mass spectrometric analysis of organic materials: proteins, lipids, terpenoid resins, lignocellulosic polymers, and dyestuff. In: Mass spectrometry handbook. John Wiley & Sons, Inc., pp 797–828Google Scholar
  19. 19.
    Evershed RP (2009) Compound-specific stable isotopes in organic residue analysis in archaeology. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, pp 389–432CrossRefGoogle Scholar
  20. 20.
    Clark KA, Ikram S, Evershed RP (2013) Organic chemistry of balms used in the preparation of pharaonic meat mummies. Proc Natl Acad Sci 110(51):20392–20395CrossRefGoogle Scholar
  21. 21.
    Hansel FA, Bull ID, Evershed RP (2011) Gas chromatographic mass spectrometric detection of dihydroxy fatty acids preserved in the ‘bound’ phase of organic residues of archaeological pottery vessels. Rapid Commun Mass Spectrom 25(13):1893–1898CrossRefGoogle Scholar
  22. 22.
    Evershed RP (2008) Organic residue analysis in archaeology: the archaeological biomarker revolution. Archaeometry 50(6):895–924CrossRefGoogle Scholar
  23. 23.
    Copley M et al (2005) Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst 130(6):860–871CrossRefGoogle Scholar
  24. 24.
    Evershed R et al (2004) Archaeology: formulation of a Roman cosmetic. Nature 432(7013):35–36CrossRefGoogle Scholar
  25. 25.
    Buckley SA, Clark KA, Evershed RP (2004) Complex organic chemical balms of Pharaonic animal mummies. Nature 431(7006):294–299CrossRefGoogle Scholar
  26. 26.
    Modugno F, Ribechini E, Colombini MP (2006) Chemical study of triterpenoid resinous materials in archaeological findings by means of direct exposure electron ionisation mass spectrometry and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 20(11):1787–1800CrossRefGoogle Scholar
  27. 27.
    Ribechini E et al (2008) Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass unguentaria. J Chromatogr A 1183(1):158–169CrossRefGoogle Scholar
  28. 28.
    Modugno F, Ribechini E, Colombini MP (2006) Aromatic resin characterisation by gas chromatography–mass spectrometry: raw and archaeological materials. J Chromatogr A 1134(1):298–304CrossRefGoogle Scholar
  29. 29.
    Ribechini E et al (2008) An integrated analytical approach for characterizing an organic residue from an archaeological glass bottle recovered in Pompeii (Naples, Italy). Talanta 74(4):555–561CrossRefGoogle Scholar
  30. 30.
    Colombini MP, Modugno F, Ribechini E (2005) Direct exposure electron ionization mass spectrometry and gas chromatography/mass spectrometry techniques to study organic coatings on archaeological amphorae. J Mass Spectrom 40(5):675–687CrossRefGoogle Scholar
  31. 31.
    Colombini MP, Modugno F, Ribechini E (2005) Organic mass spectrometry in archaeology: evidence for Brassicaceae seed oil in Egyptian ceramic lamps. J Mass Spectrom 40(7):890–898CrossRefGoogle Scholar
  32. 32.
    Ribechini E et al (2009) Py-GC/MS, GC/MS and FTIR investigations on LATE Roman–Egyptian adhesives from opus sectile: new insights into ancient recipes and technologies. Anal Chim Acta 638(1):79–87CrossRefGoogle Scholar
  33. 33.
    Colombini M et al (2009) An Etruscan ointment from Chiusi (Tuscany, Italy): its chemical characterization. J Archaeol Sci 36(7):1488–1495CrossRefGoogle Scholar
  34. 34.
    Pérez-Arantegui J et al (2009) Colorants and oils in Roman make-ups—an eye witness account. TrAC Trends Anal Chem 28(8):1019–1028CrossRefGoogle Scholar
  35. 35.
    Ribechini E, Pérez-Arantegui J, Colombini MP (2011) Gas chromatography/mass spectrometry and pyrolysis-gas chromatography/mass spectrometry for the chemical characterisation of modern and archaeological figs (Ficus carica). J Chromatogr A 1218(25):3915–3922CrossRefGoogle Scholar
  36. 36.
    Ribechini E et al (2011) Discovering the composition of ancient cosmetics and remedies: analytical techniques and materials. Anal Bioanal Chem 401(6):1727–1738CrossRefGoogle Scholar
  37. 37.
    Giachi G et al (2013) Ingredients of a 2000-y-old medicine revealed by chemical, mineralogical, and botanical investigations. Proc Natl Acad Sci 110(4):1193–1196CrossRefGoogle Scholar
  38. 38.
    Orsini S et al (2015) Micromorphological and chemical elucidation of the degradation mechanisms of birch bark archaeological artefacts. Herit Sci 3(1):2CrossRefGoogle Scholar
  39. 39.
    Colombini M et al (2005) Characterisation of organic residues in pottery vessels of the Roman age from Antinoe (Egypt). Microchem J 79(1):83–90CrossRefGoogle Scholar
  40. 40.
    Tchapla A et al (2004) Characterisation of embalming materials of a mummy of the Ptolemaic era. Comparison with balms from mummies of different eras. J Sep Sci 27(3):217–234CrossRefGoogle Scholar
  41. 41.
    Stacey R (2011) The composition of some Roman medicines: evidence for Pliny’s Punic wax? Anal Bioanal Chem 401(6):1749–1759CrossRefGoogle Scholar
  42. 42.
    Connan J, Nissenbaum A (2003) Conifer tar on the keel and hull planking of the Ma’agan Mikhael Ship (Israel, 5th century BC): identification and comparison with natural products and artefacts employed in boat construction. J Archaeol Sci 30(6):709–719CrossRefGoogle Scholar
  43. 43.
    Brettell R et al (2015) ‘Choicest unguents’: molecular evidence for the use of resinous plant exudates in late Roman mortuary rites in Britain. J Archaeol Sci 53:639–648CrossRefGoogle Scholar
  44. 44.
    Steele VJ, Stern B, Stott AW (2010) Olive oil or lard?: distinguishing plant oils from animal fats in the archeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 24(23):3478–3484CrossRefGoogle Scholar
  45. 45.
    Marangou C, Stern B (2009) Neolithic zoomorphic vessels from eastern Macedonia, Greece: issues of function. Archaeometry 51(3):397–412CrossRefGoogle Scholar
  46. 46.
    Stern B et al (2008) New investigations into the Uluburun resin cargo. J Archaeol Sci 35(8):2188–2203CrossRefGoogle Scholar
  47. 47.
    Regert M (2011) Analytical strategies for discriminating archeological fatty substances from animal origin. Mass Spectrom Rev 30(2):177–220CrossRefGoogle Scholar
  48. 48.
    Cramp LJ et al (2014) Neolithic dairy farming at the extreme of agriculture in northern Europe. Proc R Soc Lond B Biol Sci 281(1791):20140819CrossRefGoogle Scholar
  49. 49.
    Cramp LJ et al (2014) Immediate replacement of fishing with dairying by the earliest farmers of the northeast Atlantic archipelagos. Proc R Soc Lond B Biol Sci 281(1780):20132372CrossRefGoogle Scholar
  50. 50.
    Salque M et al (2013) Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493(7433):522–525CrossRefGoogle Scholar
  51. 51.
    Outram AK et al (2012) Patterns of pastoralism in later Bronze Age Kazakhstan: new evidence from faunal and lipid residue analyses. J Archaeol Sci 39(7):2424–2435CrossRefGoogle Scholar
  52. 52.
    Dunne J et al (2012) First dairying in green Saharan Africa in the fifth millennium BC. Nature 486(7403):390–394CrossRefGoogle Scholar
  53. 53.
    Grieco D, Piepoli G (1964) Composizione degli acidi grassi contenuti nei lipidi estratti da semi e frutti oleosi. Rivista Italiana delle Sostanze Grasse, pp 283–287Google Scholar
  54. 54.
    O’Donoghue K et al (1996) Remarkable preservation of biomolecules in ancient radish seeds. Proc R Soc Lond B Biol Sci 263(1370):541–547CrossRefGoogle Scholar
  55. 55.
    Sandy DB (1989) The production and use of vegetable-oils in Ptolemaic Egypt. Scholars Press, GA, AtlantaGoogle Scholar
  56. 56.
    McGovern PE et al (2013) Beginning of viniculture in France. Proc Natl Acad Sci 110(25):10147–10152CrossRefGoogle Scholar
  57. 57.
    McGovern PE et al (2004) Fermented beverages of pre-and proto-historic China. Proc Natl Acad Sci USA 101(51):17593–17598CrossRefGoogle Scholar
  58. 58.
    Correa-Ascencio M et al (2014) Pulque production from fermented agave sap as a dietary supplement in Prehispanic Mesoamerica. Proc Natl Acad Sci 111(39):14223–14228CrossRefGoogle Scholar
  59. 59.
    Charrié-Duhaut A et al (2013) First molecular identification of a hafting adhesive in the Late Howiesons Poort at diepkloof Rock shelter (Western Cape, South Africa). J Archaeol Sci 40(9):3506–3518CrossRefGoogle Scholar
  60. 60.
    Charrié-Duhaut A et al (2009) Molecular and isotopic archaeology: top grade tools to investigate organic archaeological materials. C R Chim 12(10):1140–1153CrossRefGoogle Scholar
  61. 61.
    Buonasera TY et al (2015) Lipid biomarkers and compound specific δ 13 C analysis indicate early development of a dual-economic system for the Arctic Small Tool tradition in northern Alaska. J Archaeol Sci 61:129–138CrossRefGoogle Scholar
  62. 62.
    Crowther A et al (2015) Use of Zanzibar copal (Hymenaea verrucosa Gaertn.) as incense at Unguja Ukuu, Tanzania in the 7–8th century CE: chemical insights into trade and Indian Ocean interactions. J Archaeol Sci 53:374–390CrossRefGoogle Scholar
  63. 63.
    Ostapkowicz J et al (2013) Birdmen, cemís and duhos: material studies and AMS 14 C dating of Pre-Hispanic Caribbean wood sculptures in the British Museum. J Archaeol Sci 40(12):4675–4687CrossRefGoogle Scholar
  64. 64.
    Stacey R, Cartwright C, McEwan C (2006) Chemical characterization of ancient Mesoamerican ‘copal’resins: preliminary results. Archaeometry 48(2):323–340CrossRefGoogle Scholar
  65. 65.
    Otero JG, Schuster V, Svoboda A (2015) Fish and plants: the “hidden” resources in the archaeological record of the North–central Patagonian coast (Argentina). Quat Int 373:72–81CrossRefGoogle Scholar
  66. 66.
    Kanthilatha N et al (2014) Identification of preserved fatty acids in archaeological floor sediments from prehistoric sites at Ban Non Wat and Nong Hua Raet in northeast Thailand using gas chromatography. J Archaeol Sci 46:353–362CrossRefGoogle Scholar
  67. 67.
    Yuasa K et al. (2014) Analysis of Japanese ancient lacquerwares excavated from Jōmon period ruins. J Anal Appl Pyrol 113:73–77CrossRefGoogle Scholar
  68. 68.
    Wei S, Song G, He Y (2015) The identification of binding agent used in late Shang Dynasty turquoise-inlayed bronze objects excavated in Anyang. J Archaeol Sci 59:211–218CrossRefGoogle Scholar
  69. 69.
    Bleton J, Tchapla A (2009) SPME/GC-MS in the characterisation of terpenic resins. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, pp 261–302CrossRefGoogle Scholar
  70. 70.
    Regert M et al (2006) Molecular characterisation of birch bark tar by headspace solid-phase microextraction gas chromatography–mass spectrometry: a new way for identifying archaeological glues. J Chromatogr A 1101(1):245–253CrossRefGoogle Scholar
  71. 71.
    van der Werf I et al (2014) A quasi non-destructive approach for amber geological provenance assessment based on head space solid-phase microextraction gas chromatography–mass spectrometry. Talanta 119:435–439CrossRefGoogle Scholar
  72. 72.
    Łucejko JJ, et al (2015) Analytical instrumental techniques to study archaeological wood degradation. Appl Spectrosc Rev (just-accepted)Google Scholar
  73. 73.
    Sáiz-Jiménez C, De Leeuw J (1984) Pyrolysis-gas chromatography-mass spectrometry of isolated, synthetic and degraded lignins. Org Geochem 6:417–422CrossRefGoogle Scholar
  74. 74.
    Faix O, Meier D, Fortmann I (1990) Thermal degradation products of wood. Eur J Wood Wood Prod Holz als Roh-und Werkstoff 48(7–8):281–285Google Scholar
  75. 75.
    Sáiz-Jiménez C, De Leeuw J (1986) Lignin pyrolysis products: their structures and their significance as biomarkers. Org Geochem 10(4):869–876CrossRefGoogle Scholar
  76. 76.
    Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54(1):519–546CrossRefGoogle Scholar
  77. 77.
    Challinor JM (2001) Review: the development and applications of thermally assisted hydrolysis and methylation reactions. J Anal Appl Pyrol 61(1):3–34CrossRefGoogle Scholar
  78. 78.
    Saiz-Jimenez C et al (1987) Chemical characterization of recent and buried woods by analytical pyrolysis. Comparison of pyrolysis data with 13C NMR and wet chemical data. J Anal Appl Pyrol 11:437–450CrossRefGoogle Scholar
  79. 79.
    Uçar G et al (2005) Analytical pyrolysis and FTIR spectroscopy of fossil Sequoiadendron giganteum (Lindl.) wood and MWLs isolated hereof. Eur J Wood Wood Prod Holz als Roh- und Werkstoff 63(1):57–63CrossRefGoogle Scholar
  80. 80.
    Yang H et al (2005) Biomolecular preservation of Tertiary Metasequoia Fossil Lagerstätten revealed by comparative pyrolysis analysis. Rev Palaeobot Palynol 134(3–4):237–256CrossRefGoogle Scholar
  81. 81.
    Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194CrossRefGoogle Scholar
  82. 82.
    Del Rıo J et al (2001) Py–GC/MS study of Eucalyptus globulus wood treated with different fungi. J Anal Appl Pyrol 58:441–452Google Scholar
  83. 83.
    Oudia A et al (2009) Analytical pyrolysis study of biodelignification of cloned Eucalyptus globulus (EG) clone and Pinus pinaster Aiton kraft pulp and residual lignins. J Anal Appl Pyrol 85(1):19–29CrossRefGoogle Scholar
  84. 84.
    Ibarra D et al (2004) Isolation of high-purity residual lignins from eucalypt paper pulps by cellulase and proteinase treatments followed by solvent extraction. Enzyme Microbial Technol 35(2):173–181CrossRefGoogle Scholar
  85. 85.
    Colombini MP et al (2009) A multi-analytical study of degradation of lignin in archaeological waterlogged wood. Talanta 80(1):61–70CrossRefGoogle Scholar
  86. 86.
    Richards V, West N (2002) The use of pyrolysis gas chromatography mass spectrometry to study the extent of degradation of waterlogged wood. In: Proceedings of the 8th ICOM Group on wet organic archaeological materials conference, Stockholm, 11–15 June 2001. Deutsches SchiffahrtsmuseumGoogle Scholar
  87. 87.
    Łucejko JJ et al (2009) Characterisation of archaeological waterlogged wood by pyrolytic and mass spectrometric techniques. Anal Chim Acta 654(1):26–34CrossRefGoogle Scholar
  88. 88.
    Łucejko JJ et al (2012) Analytical pyrolysis vs. classical wet chemical analysis to assess the decay of archaeological waterlogged wood. Anal Chim Acta 745:70–77CrossRefGoogle Scholar
  89. 89.
    Tamburini D et al (2014) Characterisation of archaeological waterlogged wood from Herculaneum by pyrolysis and mass spectrometry. Int Biodeterior Biodegrad 86:142–149CrossRefGoogle Scholar
  90. 90.
    van Bergen PF et al (2000) Evidence for demethylation of syringyl moieties in archaeological wood using pyrolysis-gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 14(2):71–79CrossRefGoogle Scholar
  91. 91.
    Tamburini D et al. (2015) Archaeological wood degradation at the site of Biskupin (Poland): wet chemical analysis and evaluation of specific Py-GC/MS profiles. J Anal Appl Pyrol 115:7–15CrossRefGoogle Scholar
  92. 92.
    Fabbri D, Helleur R (1999) Characterization of the tetramethylammonium hydroxide thermochemolysis products of carbohydrates. J Anal Appl Pyrol 49(1):277–293CrossRefGoogle Scholar
  93. 93.
    Kuroda K-I, Nakagawa-izumi A (2006) Tetramethylammonium hydroxide (TMAH) thermochemolysis of lignin: improvement of the distribution profile of products derived from β-aryl ether subunits. J Anal Appl Pyrol 75(2):104–111CrossRefGoogle Scholar
  94. 94.
    Kuroda K-I (2000) Pyrolysis-trimethylsilylation analysis of lignin: preferential formation of cinnamyl alcohol derivatives. J Anal Appl Pyrol 56(1):79–87CrossRefGoogle Scholar
  95. 95.
    Abdel-Ghani M et al (2009) Characterization of paint and varnish on a medieval Coptic-Byzantine icon: novel usage of dammar resin. Spectrochim Acta Part A Mol Biomol Spectrosc 73(3):566–575CrossRefGoogle Scholar
  96. 96.
    Andreotti A et al (2014) Characterization of the organic materials used in the painting of the vaulted ceiling at the Saadian Tomb of Mulay Ahmed Al-Mansour (Marrakech). J Cult Heritage 15(3):300–307CrossRefGoogle Scholar
  97. 97.
    Andreotti A et al (2009) A diagnosis of the yellowing of the marble high reliefs and the black decorations in the chapel of the tomb of Saint Anthony (Padua, Italy). Int J Mass Spectrom 284(1):123–130CrossRefGoogle Scholar
  98. 98.
    Atrei A et al (2014) An integrated approach to the study of a reworked painting “Madonna with child” attributed to Pietro Lorenzetti. J Cult Heritage 15(1):80–84CrossRefGoogle Scholar
  99. 99.
    Baumer U, Dietemann P (2010) Identification and differentiation of dragon’s blood in works of art using gas chromatography/mass spectrometry. Anal Bioanal Chem 397(3):1363–1376CrossRefGoogle Scholar
  100. 100.
    Bersani D et al (2008) Pigments and binders in “Madonna col Bambino e S. Giovannino” by Botticelli investigated by micro-Raman and GC/MS. J Cult Heritage 9(1):97–102CrossRefGoogle Scholar
  101. 101.
    Blaško J et al (2008) Gas chromatography/mass spectrometry of oils and oil binders in paintings. J Sep Sci 31(6–7):1067–1073CrossRefGoogle Scholar
  102. 102.
    Bonaduce I et al (2008) The binding media of the polychromy of Qin Shihuang’s Terracotta Army. J Cult Heritage 9(1):103–108CrossRefGoogle Scholar
  103. 103.
    Brécoulaki H et al (2012) Characterization of organic media in the wall-paintings of the “Palace of Nestor” at Pylos, Greece: evidence for a secco painting techniques in the Bronze Age. J Archaeol Sci 39(9):2866–2876CrossRefGoogle Scholar
  104. 104.
    Caruso F et al (2007) Gas chromatography–mass spectrometry characterization of the varnish and glue of an ancient 18th century double bass. J Chromatogr A 1147(2):206–212CrossRefGoogle Scholar
  105. 105.
    Cauzzi D et al (2013) Spectroscopic and chromatographic studies of sculptural polychromy in the Zhongshan Grottoes (RPC). J Cult Heritage 14(1):70–75CrossRefGoogle Scholar
  106. 106.
    Čukovska LR et al (2012) Micro-Raman and GC/MS analysis to characterize the wall painting technique of Dicho Zograph in churches from Republic of Macedonia. J Raman Spectrosc 43(11):1685–1693CrossRefGoogle Scholar
  107. 107.
    Daniilia S et al (2008) From Byzantine to post-Byzantine art: the painting technique of St Stephen’s wall paintings at Meteora, Greece. J Archaeol Sci 35(9):2474–2485CrossRefGoogle Scholar
  108. 108.
    Daniilia S et al (2007) The Byzantine wall paintings from the Protaton Church on Mount Athos, Greece: tradition and science. J Archaeol Sci 34(12):1971–1984CrossRefGoogle Scholar
  109. 109.
    Ferreira ES, Van der Horst J, Boon JJ (2005) Chemical aspects of the binding media of the Oranjezaal ensemble: an insight into 17th century Netherlandish materials and methods. In: Proceedings of the 14th ICOM-CC meeting in The Hague (I. Vergier ed), Preprint vol IIGoogle Scholar
  110. 110.
    Guttmann MJ (2013) Transylvanian glass icons: a GC/MS study on the binding media. J Cult Heritage 14(5):439–447CrossRefGoogle Scholar
  111. 111.
    Kalinina KB et al (2012) An analytical investigation of the painting technique of Italian Renaissance master Lorenzo Lotto. J Cult Heritage 13(3):259–274CrossRefGoogle Scholar
  112. 112.
    Ling H et al (2007) Analytical characterization of binding medium used in ancient Chinese artworks by pyrolysis–gas chromatography/mass spectrometry. Microchem J 85(2):347–353CrossRefGoogle Scholar
  113. 113.
    Miliani C et al (2007) Non-invasive in situ investigations versus micro-sampling: a comparative study on a Renoirs painting. Appl Phys A 89(4):849–856CrossRefGoogle Scholar
  114. 114.
    Ospitali F et al (2007) XVI century wall paintings in the “Messer Filippo” cell of the tower of Spilamberto: microanalyses and monitoring. J Cult Heritage 8(3):323–327CrossRefGoogle Scholar
  115. 115.
    Pitthard V, et al (2006) Study of complex organic binding media systems on artworks applying GC‐MS analysis: selected examples from the Kunsthistorisches Museum, Vienna. In: Macromolecular symposia.Wiley Online LibraryGoogle Scholar
  116. 116.
    Rampazzi L et al (2007) Prehistoric wall paintings: the case of the Domus de Janas necropolis (Sardinia, Italy). Archaeometry 49(3):559–569CrossRefGoogle Scholar
  117. 117.
    Rasmussen KL et al (2012) The constituents of the ink from a Qumran inkwell: new prospects for provenancing the ink on the Dead Sea Scrolls. J Archaeol Sci 39(9):2956–2968CrossRefGoogle Scholar
  118. 118.
    Scott DA et al (2009) Examination of some pigments, grounds and media from Egyptian cartonnage fragments in the Petrie Museum, University College London. J Archaeol Sci 36(3):923–932CrossRefGoogle Scholar
  119. 119.
    Valianou L et al (2011) Identification of organic materials in icons of the Cretan School of iconography. J Archaeol Sci 38(2):246–254CrossRefGoogle Scholar
  120. 120.
    van der Werf ID et al (2013) Multi-technique chemical characterisation of a 12–13th-century painted Crucifix. Microchem J 106:87–94CrossRefGoogle Scholar
  121. 121.
    van der Werf ID et al (2008) San Francesco d’Assisi (Apulia, South Italy): study of a manipulated 13th century panel painting by complementary diagnostic techniques. J Cult Heritage 9(2):162–171CrossRefGoogle Scholar
  122. 122.
    Vázquez C et al (2008) Combining TXRF, FT-IR and GC–MS information for identification of inorganic and organic components in black pigments of rock art from Alero Hornillos 2 (Jujuy, Argentina). Anal Bioanal Chem 391(4):1381–1387CrossRefGoogle Scholar
  123. 123.
    Wei S, Ma Q, Schreiner M (2012) Scientific investigation of the paint and adhesive materials used in the Western Han dynasty polychromy terracotta army, Qingzhou, China. J Archaeol Sci 39(5):1628–1633CrossRefGoogle Scholar
  124. 124.
    Wei S et al (2011) Analytical characterization of lacquer objects excavated from a Chu tomb in China. J Archaeol Sci 38(10):2667–2674Google Scholar
  125. 125.
    Andreotti A et al (2007) Novel applications of the Er: YAG laser cleaning of old paintings. In: Nimmrichter J, Kautek W, Schreiner M (eds) Lasers in the conservation of artworks. Springer, BerlinGoogle Scholar
  126. 126.
    Andreotti A, et al (2006) Multianalytical study of laser pulse duration effects in the IR laser cleaning of wall paintings from the Monumental Cemetery of Pisa. Laser Chem 2006:11, Art ID 39046. doi: 10.1155/2006/39046
  127. 127.
    Casoli A, Berzioli M, Cremonesi P (2013) The chemistry of egg binding medium and its interactions with organic solvents and water. New Insights Clean Paint 39:39–44Google Scholar
  128. 128.
    DeCruz A et al (2009) Investigation of the Er: YAG laser at 2.94 μm to remove lichens growing on stone. Stud Conserv 54(4):268–277CrossRefGoogle Scholar
  129. 129.
    Kahrim K et al (2009) The application of in situ mid-FTIR fibre-optic reflectance spectroscopy and GC–MS analysis to monitor and evaluate painting cleaning. Spectrochim Acta Part A Mol Biomol Spectrosc 74(5):1182–1188CrossRefGoogle Scholar
  130. 130.
    Lustrato G et al (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int Biodeterior Biodegrad 69:51–61CrossRefGoogle Scholar
  131. 131.
    Morrison R et al (2007) An investigation of parameters for the use of citrate solutions for surface cleaning unvarnished paintings. Stud Conserv 52(4):255–270CrossRefGoogle Scholar
  132. 132.
    Osete-Cortina L, Doménech-Carbó MT (2006) Study on the effects of chemical cleaning on pinaceae resin-based varnishes from panel and canvas paintings using pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrol 76(1):144–153CrossRefGoogle Scholar
  133. 133.
    Ranalli G et al (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98(1):73–83CrossRefGoogle Scholar
  134. 134.
    Sánchez-Ledesma A, Muro-García C, Gayo-García MD (2010) Effects of commercial soaps on unvarnished painted surfaces: a pilot study for their assessment. In: New insights into the Cleaning of Paintings. Proceedings from the cleaning 2010 international conference, ValenciaGoogle Scholar
  135. 135.
    Mazzeo R, et al (2010) Scientific examination of the traditional materials and techniques used in Yuan Dynasty wall paintings. In: Proceedings of the second international conference on the conservation of Grotto Sites, Mogao Grottoes, Dunhuang, PeopleGoogle Scholar
  136. 136.
    Riedo C, Scalarone D, Chiantore O (2010) Advances in identification of plant gums in cultural heritage by thermally assisted hydrolysis and methylation. Anal Bioanal Chem 396(4):1559–1569CrossRefGoogle Scholar
  137. 137.
    Riedo C, Scalarone D, Chiantore O (2013) Multivariate analysis of pyrolysis-GC/MS data for identification of polysaccharide binding media. Anal Methods 5(16):4060–4067CrossRefGoogle Scholar
  138. 138.
    Vicente JP et al (2005) Identification of lipid binders in old oil paintings by separation of 4-bromomethyl-7-methoxycoumarin derivatives of fatty acids by liquid chromatography with fluorescence detection. J Chromatogr A 1076(1):44–50CrossRefGoogle Scholar
  139. 139.
    Bonaduce I et al (2007) Gas chromatographic–mass spectrometric characterisation of plant gums in samples from painted works of art. J Chromatogr A 1175(2):275–282CrossRefGoogle Scholar
  140. 140.
    Hofta P (2006) Original Paper An evaluation of GC-MS and HPLC-FD methods for analysis of protein binders in paintings. J Sep Sci 29:2653–2663CrossRefGoogle Scholar
  141. 141.
    Osete-Cortina L, Doménech-Carbó MT (2005) Analytical characterization of diterpenoid resins present in pictorial varnishes using pyrolysis–gas chromatography–mass spectrometry with on line trimethylsilylation. J Chromatogr A 1065(2):265–278CrossRefGoogle Scholar
  142. 142.
    Piccirillo A, Scalarone D, Chiantore O (2005) Comparison between off-line and on-line derivatisation methods in the characterisation of siccative oils in paint media. J Anal Appl Pyrol 74(1):33–38CrossRefGoogle Scholar
  143. 143.
    Russell J et al (2011) The identification of synthetic organic pigments in modern paints and modern paintings using pyrolysis-gas chromatography–mass spectrometry. Anal Bioanal Chem 400(5):1473–1491CrossRefGoogle Scholar
  144. 144.
    Sutherland K (2010) Bleached shellac picture varnishes: characterization and case studies. J Inst Conserv 33(2):129–145CrossRefGoogle Scholar
  145. 145.
    Fabbri D et al (2005) Profiling fatty acids in vegetable oils by reactive pyrolysis–gas chromatography with dimethyl carbonate and titanium silicate. J Chromatogr A 1100(2):218–222CrossRefGoogle Scholar
  146. 146.
    Melucci D et al (2011) Behaviour of phospholipids in analytical reactive pyrolysis. J Therm Anal Calorim 104(2):415–421CrossRefGoogle Scholar
  147. 147.
    Torri C et al (2013) Py-SPME-GC-MS with on-fiber derivatization as a new solvent-less technique for the study of polar macromolecules: application to natural gums. Microchem J 110:719–725CrossRefGoogle Scholar
  148. 148.
    Chiavari G, Fabbri D, Prati S (2005) Effect of pigments on the analysis of fatty acids in siccative oils by pyrolysis methylation and silylation. J Anal Appl Pyrol 74(1–2):39–44CrossRefGoogle Scholar
  149. 149.
    Gautier G, Colombini MP (2007) GC–MS identification of proteins in wall painting samples: a fast clean-up procedure to remove copper-based pigment interferences. Talanta 73(1):95–102CrossRefGoogle Scholar
  150. 150.
    Lluveras-Tenorio A et al (2012) Analysis of plant gums and saccharide materials in paint samples: comparison of GC-MS analytical procedures and databases. Chem Cent J 6(1):115Google Scholar
  151. 151.
    Singer B, McGuigan R (2007) The simultaneous analysis of proteins, lipids, and diterpenoid resins found in cultural objects. Anal Chim 97(7):405–417CrossRefGoogle Scholar
  152. 152.
    Andreotti A et al (2006) Combined GC/MS analytical procedure for the characterization of glycerolipid, waxy, resinous, and proteinaceous materials in a unique paint microsampler. Anal Chem 78(13):4490–4500CrossRefGoogle Scholar
  153. 153.
    Bonaduce I, Cito M, Colombini MP (2009) The development of a gas chromatographic–mass spectrometric analytical procedure for the determination of lipids, proteins and resins in the same paint micro-sample avoiding interferences from inorganic media. J Chromatogr A 1216(32):5931–5939CrossRefGoogle Scholar
  154. 154.
    Echard J-P, Lavédrine B (2008) Review on the characterisation of ancient stringed musical instruments varnishes and implementation of an analytical strategy. J Cult Heritage 9(4):420–429CrossRefGoogle Scholar
  155. 155.
    Lluveras A et al (2009) GC/MS analytical procedure for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous and polysaccharide materials in the same paint microsample avoiding interferences from inorganic media. Anal Chem 82(1):376–386CrossRefGoogle Scholar
  156. 156.
    Niimura N et al (1996) Characterization of Rhus vernicifera and Rhus Succedanea lacquer films and their pyrolysis mechanisms studied using two-stage pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrol 37:199–209CrossRefGoogle Scholar
  157. 157.
    Niimura N, Miyakoshi T (2003) Characterization of natural resin films and identification of ancient coating. J Mass Spectrom Soc Jpn 51(4):439–457CrossRefGoogle Scholar
  158. 158.
    Kumanotani J (1995) Urushi (oriental lacquer)—a natural aesthetic durable and future-promising coating. Prog Org Coat 26(2–4):163–195CrossRefGoogle Scholar
  159. 159.
    Le Hô A et al (2012) Molecular criteria for discriminating museum Asian lacquerware from different vegetal origins by pyrolysis gas chromatography/mass spectrometry. Anal Chim Acta 710:9–16CrossRefGoogle Scholar
  160. 160.
    Lu R et al. (2012) Analysis of Japanese Jomon lacquer-ware by pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrol 103:68–72CrossRefGoogle Scholar
  161. 161.
    Lu R et al (2007) Identification of Ryukyu lacquerware by pyrolysis–gas chromatography/mass spectrometry. J Anal Appl Pyrol 80:101–110CrossRefGoogle Scholar
  162. 162.
    Lu R, Kamiya Y, Miyakoshi T (2006) Applied analysis of lacquer films based on pyrolysis-gas chromatography/mass spectrometry. Talanta 70:370–376CrossRefGoogle Scholar
  163. 163.
    Niimura N (2009) Determination of the type of lacquer on East Asian lacquer ware. Int J Mass Spectrom 284:93–97CrossRefGoogle Scholar
  164. 164.
    Niimura N, Miyakoshi T (2006) Structural study of oriental lacquer films during the hardening process. Talanta 70:146–152CrossRefGoogle Scholar
  165. 165.
    Niimura N et al (1999) Identification of ancient lacquer film using two stage pyrolysis-gas chromatography/mass spectrometry. Archeometry 41:137–149CrossRefGoogle Scholar
  166. 166.
    Pitthard V et al (2010) Scientific investigations of antique lacquers fron a 17th-century japanese ornamental cabinet. Archaeometry 52(6):1044–1056Google Scholar
  167. 167.
    Tamburini D, Bonaduce I, Colombini MP (2015) Characterization and identification of urushi using in situ pyrolysis/silylation–gas chromatography–mass spectrometry. J Anal Appl Pyrol 111:33–40CrossRefGoogle Scholar
  168. 168.
    Tamburini D, Bonaduce I, Colombini MP (2015) Characterisation of oriental lacquers from Rhus succedanea and Melanorrhoea usitata using in situ pyrolysis/silylation-gas chromatography mass spectrometry. J Anal Appl Pyrol 116:129–141CrossRefGoogle Scholar
  169. 169.
    Colombini MP, Bonaduce I, Gautier G (2003) Molecular pattern recognition of fresh and aged shellac. Chromatographia 58(5/6):357–364Google Scholar
  170. 170.
    Bonaduce I, Colombini MP (2004) Characterisation of beeswax in works of art by gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry procedures. J Chromatogr A 1028(2):297–306CrossRefGoogle Scholar
  171. 171.
    Lattuati-Derieux A, Thao S, Langlois J, Regert M (2008) First results on headspace-solid phase microextraction-gas chromatography/mass spectrometry of volatile organic compounds emitted by wax objects in museums. J Chromatogr A 1187:239–249CrossRefGoogle Scholar
  172. 172.
    Duce C et al (2012) Physico-chemical characterization of protein-pigment interactions in tempera paint reconstructions: casein/cinnabar and albumin/cinnabar. Anal Bioanal Chem 402:2183–2193CrossRefGoogle Scholar
  173. 173.
    Duce C et al (2013) Interactions between inorganic pigments and proteinaceous binders in reference paint reconstructions. Dalton Trans 42(17):5975–5984CrossRefGoogle Scholar
  174. 174.
    Pellegrini D et al (2016) Fourier transform infrared spectroscopic study of rabbit glue/inorganic pigments mixtures in fresh and aged reference paint reconstructions. Microchem J 124:31–35CrossRefGoogle Scholar
  175. 175.
    Ormsby BA et al (2005) British Watercolour cakes from the eighteenth to the early twentieth century. Stud Conserv 50(1):45–66CrossRefGoogle Scholar
  176. 176.
    Colombini MP, Modugno F, Ribechini E (2009) GC/MS in the characterization of lipids. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, London, pp 191–214CrossRefGoogle Scholar
  177. 177.
    Bonaduce I, et al (2012) New insights into the ageing of linseed oil paint binder: a qualitative and quantitative analytical study. PLoS One 7(11)Google Scholar
  178. 178.
    Shilling MR, Carson DM, Khanjian HP (1998) Evaporation of fatty acids and the formation of ghost images by framed oil paintings. West Assoc Art Conserv (WAAC) Newsletter, 21(1)Google Scholar
  179. 179.
    Keune K, Noble P, Boon JJ (2002) Chemical changes in lead-pigmented oil paints: on the early stage of formation of protrusions. In: Proceeding of art 2002, the 7th international conference on non-destructive testing and microanalysis for the diagnostics and conservations of the cultural and environmental Heritage. Antwerp, BelgiumGoogle Scholar
  180. 180.
    van der Weerd J et al (2002) Chemical changes in old master paintings: dissolution, metal soap formation and remineralization processes in lead pigmented paint layers of 17th century paintings. Zeitschrift für Kunsttechnologie und Konservierung 16:36–51Google Scholar
  181. 181.
    Keune K et al (2008) Comparative study of the effect of traditional pigments on artificially aged oil paint systems using complementary analytical techniques. In: Bridgland J (ed) Preprints of 15th triennal meeting of ICOM committee for conservation. Allied Publishers Pvt. Ltd., New Delhi, pp 833–842Google Scholar
  182. 182.
    Shilling MR, Khanjian HP (1996) Gas chromatographic determination of the fatty acid and glycerol content of lipids. I: the effects of pigments and ageing on the composition of oil paints. In: Bridgland J (ed) ICOM committee for conservation, 11th triennial meeting in Edinburgh, Scotland, 1–6 September 1996: Preprints. James and James: London. pp 220–227Google Scholar
  183. 183.
    Sutherland K (2000) The extraction of soluble components from an oil paint film by a varnish solution. Stud Conserv 45:54–62Google Scholar
  184. 184.
    Keune K, Ferreira ESB, Boon JJ (2005) Characterization and localization of the oil-binding medium in paint cross-sections using imaging secondary ion mass spectrometry. In: ICOM committee for conservation 14th triennial meeting 2005. James & James, The Hague, The NetherlandsGoogle Scholar
  185. 185.
    Phenix A, Sutherland K (2001) The cleaning of paintings: effects of organic solvents on oil paint films. Rev Conserv 2:47–60Google Scholar
  186. 186.
    Sutherland K (2003) Solvent-extractable components of linseed oil paint films. Stud Conserv 48:111–135CrossRefGoogle Scholar
  187. 187.
    Sutherland K (2006) Measurements of solvent cleaning effects on oil paintings. J Am Inst Conserv 45(3):211–226CrossRefGoogle Scholar
  188. 188.
    Lluveras-Tenorio A et al (2012) The development of a new analytical model for the identification of saccharide binders in paint samples. PLoS One 7(11):e49383CrossRefGoogle Scholar
  189. 189.
    Tsakalof AK, Bairachtari KA, Chryssoulakis ID (2006) Pitfalls in drying oils identification in art objects by gas chromatography. J Sep Sci 29(11):1642–1646CrossRefGoogle Scholar
  190. 190.
    van Keulen H (2009) Gas chromatography/mass spectrometry methods applied for the analysis of a Round Robin sample containing materials present in samples of works of art. Int J Mass Spectrom 284(1):162–169CrossRefGoogle Scholar
  191. 191.
    Scalarone D, Chiantore O (2002) The use of pyrolysis-GC/MS for the identification of polymeric constituents in artworks, museum and collectible design objects. In: Plastics in art: history, technology, preservation, Siegl. pp 90–104Google Scholar
  192. 192.
    Izzo FC et al (2014) 20th century artists’ oil paints: the case of the olii by Lucio Fontana. J Cult Heritage 15(5):557–563CrossRefGoogle Scholar
  193. 193.
    Izzo FC, et al (2014) Modern oil paints–formulations, organic additives and degradation: some case studies. In: Issues in contemporary oil paint. Springer, pp 75–104Google Scholar
  194. 194.
    La Nasa J, Zanaboni M, Uldanck D, Degano I, Modugno F, Kutzke H, Tveit ES, Topalova-Casadiego B, Colombini MP (2015) Novel application of liquid chromatography/mass spectrometry for the characterization of drying oils in art: elucidation on the composition of original paint materials used by Edvard Munch (1863–1944). Anal Chim ActaGoogle Scholar
  195. 195.
    Schilling MR, Mazurek J, Learner TJS (2007) Studies of modern oil-based artists’ paint media by gas chromatography/mass spectrometry. In: In modern paints uncovered: proceedings from the modern paints uncovered symposium. Getty Conservation Institute, Los Angeles. pp 129–139Google Scholar
  196. 196.
    Cappitelli F, Koussiaki F (2006) THM-GCMS and FTIR for the investigation of paints in Picasso’s Still Life, Weeping Woman and Nude Woman in a Red Armchair from the Tate Collection, London. J Anal ApplPyrol 75:200–204Google Scholar
  197. 197.
    van den Berg KJ et al (2014) Issues in contemporary oil paint. Springer, New YorkGoogle Scholar
  198. 198.
    Ghelardi E (2014) A multi analytical approach for the characterisation of the contemporary paint materials. PhD thesis, Università degli Studi di FirenzeGoogle Scholar
  199. 199.
    Burnstock A, et al (2007) An investigation of water-sensitive oil paints. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Getty PublicationsGoogle Scholar
  200. 200.
    Bayliss S et al (2016) An investigation into the separation and migration of oil in paintings by Erik Oldenhof. Microchem J 124:974–982CrossRefGoogle Scholar
  201. 201.
    Narine SS, Kong X (2005) Vegetable oils in production of polymers and plastics. Bailey’s Ind Oil Fat ProdGoogle Scholar
  202. 202.
    Schilling MR, Keeney J, Leamer T (2004) Characterization of alkyd paint media by gas chromatography-mass spectrometry. Stud Conserv 49(Supplement-2):197–201CrossRefGoogle Scholar
  203. 203.
    Wei S, Pintus V, Schreiner M (2013) A comparison study of alkyd resin used in art works by Py-GC/MS and GC/MS: the influence of aging. J Anal Appl Pyrol 104:441–447CrossRefGoogle Scholar
  204. 204.
    La Nasa J et al (2013) Alkyd paints in art: characterization using integrated mass spectrometry. Anal Chim Acta 797:64–80CrossRefGoogle Scholar
  205. 205.
    Ploeger R, Scalarone D, Chiantore O (2008) The characterization of commercial artists’ alkyd paints. J Cult Heritage 9:412–419CrossRefGoogle Scholar
  206. 206.
    Cappitelli F (2004) THM-GCMS and FTIR for the study of binding media in Yellow Islands by Jackson Pollock and Break Point by Fiona Banner. J Anal Appl Pyrol 71(1):405–415CrossRefGoogle Scholar
  207. 207.
    Challinor J (1991) Structure determination of alkyd resins by simultaneous pyrolysis ethylation. J Anal Appl Pyrol 18(3):233–244CrossRefGoogle Scholar
  208. 208.
    Dietemann P et al (1865) A colloidal description of tempera and oil paints, based on a case study of Arnold Böcklin’s painting Villa am Meer II (1865). e-Preserv Sci 2014(11):29–46Google Scholar
  209. 209.
    Mustalish R (2004) Modern materials: plastics. In: Heilbrunn timeline of art history. The Metropolitan Museum of Art, New York, 2000. http://www.metmuseum.org/toah/hd/mome/hd_mome.htm
  210. 210.
    Altshuler B (2007) Collecting the new: museums and contemporary art. Princeton University Press, PrincetonGoogle Scholar
  211. 211.
    Lavédrine B, Fournier A, Martin G (2012) Preservation of plastic artefacts in museum collections. Comité Des Travaux Historiques Et ScientifiquesGoogle Scholar
  212. 212.
    Learner T (2001) The analysis of synthetic paints by pyrolysis-gas chromatography-mass spectrometry (PyGCMS). Stud Conserv 46:225–241Google Scholar
  213. 213.
    Tsuge S, Ohtani H, Watanabe C (2011) Pyrolysis-GC/MS data book of synthetic polymers: pyrograms, thermograms and MS of pyrolyzates. Elsevier, AmsterdamGoogle Scholar
  214. 214.
    Wampler TP (2007) Applied pyrolysis handbook, ed. CRC press Taylor and Francis group, New YorkGoogle Scholar
  215. 215.
    Silva MF et al (2009) Determination of the plasticizer content in poly(vinyl acetate) paint medium by pyrolysis-silylation-gas chromatography-mass spectrometry. J Anal Appl Pyrol 85(1–2):487–491CrossRefGoogle Scholar
  216. 216.
    Salam LA, Matthews RD, Robertson H (2000) Pyrolysis of poly-methyl methacrylate (PMMA) binder in thermoelectric green tapes made by the tape casting method. J Eur Ceram Soc 20(3):335–345CrossRefGoogle Scholar
  217. 217.
    Cortina LO, Carbò MTD (2006) Characterization of acrylic resins used for restoration of artworks by pyrolysis-silylation-gas chromatography/mass spectrometry with hesamethyldisilazane. J Chromatogr A 1127:228–236CrossRefGoogle Scholar
  218. 218.
    Carbò MTD et al (2008) Characterization of polyvinyl resins used as binding media in paintings by pyrolysis-silylation -gas chromatography-mass spectrometry. Anal Bioanal Chem 391:1371–1379CrossRefGoogle Scholar
  219. 219.
    Wei S, Pintus V, Schreiner M (2012) Photochemical degradation study of polyvinyl acetate paints used in artworks by Py–GC/MS. J Anal Appl Pyrol 97:158–163CrossRefGoogle Scholar
  220. 220.
    Di Crescenzo MM et al (2014) The use of waterborne paints in contemporary murals: comparing the stability of vinyl, acrylic and styrene-acrylic formulations to outdoor weathering conditions. Polym Degrad Stab 107:285–293CrossRefGoogle Scholar
  221. 221.
    Rainer L (2003) The conservation of outdoor contemporary murals. GCI Newsl 18Google Scholar
  222. 222.
    Ormsby B, Learner T (2009) The effects of wet surface cleaning treatments on acrylic emulsion artists’ paints—a review of recent scientific research. Stud Conserv 54(Supplement-1):29–41CrossRefGoogle Scholar
  223. 223.
    Jablonski E et al (2003) Conservation concerns for acrylic emulsion paints. Stud Conserv 48(Supplement-1):3–12CrossRefGoogle Scholar
  224. 224.
    Ormsby B, et al (2006) The effects of surface cleaning on acrylic emulsion paintings: a preliminary investigation. Tate Papers 6Google Scholar
  225. 225.
    Wolbers R, Norbutus A, Lagalante A (2013) Cleaning of acrylic emulsion paints: preliminary extractive studies with two commercial paint systems. In: New insights into the cleaning of paintings: proceedings of the cleaning 2010 conference, Smithsonian Institution Scholarly Press, Washington DCGoogle Scholar
  226. 226.
    Dillon CE, Lagalante AF, Wolbers RC (2014) Acrylic emulsion paint films: the effect of solution pH, conductivity, and ionic strength on film swelling and surfactant removal. Stud Conserv 59(1):52–62CrossRefGoogle Scholar
  227. 227.
    Chiantore O, Scalarone D, Learner T (2003) Characterization of artists’ acrylic emulsion paints. Int J Polym Anal Charact 8(1):67–82CrossRefGoogle Scholar
  228. 228.
    Scalarone D, Chiantore O (2004) Separation techniques for the analysis of artists’ acrylic emulsion paints. J Sep Sci 27:263–274CrossRefGoogle Scholar
  229. 229.
    La Nasa J et al (2016) A chemical study of organic materials in three murals by Keith Haring: a comparison of painting techniques. Microchem J 124:940–948CrossRefGoogle Scholar
  230. 230.
    Silva M et al (2010) Identification of additives in poly(vinylacetate) artist’s paints using PY-GC-MS. Anal Bioanal Chem 397(1):357–367CrossRefGoogle Scholar
  231. 231.
    Pintus V, Wei S, Schreiner M (2012) UV ageing studies: evaluation of lightfastness declarations of commercial acrylic paints. Anal Bioanal Chem 402(4):1567–1584CrossRefGoogle Scholar
  232. 232.
    Shilling M, et al (2012) Identification and chemical composition using chromatographic methods. In: Lavédrine B, Fournier A, Martin G (eds). Preservation of plastic artefacts in museum collections. Comité Des Travaux Historiques Et Scientifiques, pp 61–69Google Scholar
  233. 233.
    Pedersoli JL, Ligterink F, van Bommel M (2011) Non-destructive determination of acetic acid and furfural in books by solid-phase micro-extraction (SPME) and gas chromatography-mass spectrometry (GC/MS). Restaurator 32(2):110–134Google Scholar
  234. 234.
    Strlič M et al (2009) Material degradomics: on the smell of old books. Anal Chem 81(20):8617–8622CrossRefGoogle Scholar
  235. 235.
    Łojewski T et al (2010) Furfural as a marker of cellulose degradation. A quantitative approach. Appl Phys A 100(3):873–884CrossRefGoogle Scholar
  236. 236.
    Curran K, et al (2013) Heritage smells! analysis of VOC emissions from historic plastics using SPME-GC/MS. In: 6th users’ group for mass spectrometry and chromatography meeting 2013, Pisa, ItalyGoogle Scholar
  237. 237.
    Lattuati-Derieux A et al (2013) What do plastics emit? HS-SPME-GC/MS analyses of new standard plastics and plastic objects in museum collections. J Cult Heritage 14(3):238–247CrossRefGoogle Scholar
  238. 238.
    Curran K, Strlič M (2015) Polymers and volatiles: using VOC analysis for the conservation of plastic and rubber objects. Stud Conserv 60(1):1–14CrossRefGoogle Scholar
  239. 239.
    Brimblecombe P (ed) (2003) The effects of air pollution on the built environment. Imperial College Press, LondonGoogle Scholar
  240. 240.
    Schieweck A et al (2007) Occurrence of organic and inorganic biocides in the museum environment. Atmos Environ 41(15):3266–3275CrossRefGoogle Scholar
  241. 241.
    Godoi AF, Van Vaeck L, Van Grieken R (2005) Use of solid-phase microextraction for the detection of acetic acid by ion-trap gas chromatography–mass spectrometry and application to indoor levels in museums. J Chromatogr A 1067(1):331–336CrossRefGoogle Scholar
  242. 242.
    Thiébaut B et al (2007) Application of headspace SPME-GC-MS in characterisation of odorous volatile organic compounds emitted from magnetic tape coatings based on poly (urethane-ester) after natural and artificial ageing. Polym Testing 26(2):243–256CrossRefGoogle Scholar
  243. 243.
    Mitchell G, Higgitt C, Gibson LT (2014) Emissions from polymeric materials: characterised by thermal desorption-gas chromatography. Polym Degrad Stab 107:328–340CrossRefGoogle Scholar
  244. 244.
    Curran K et al (2014) Cross-infection effect of polymers of historic and heritage significance on the degradation of a cellulose reference test material. Polym Degrad Stab 107:294–306CrossRefGoogle Scholar
  245. 245.
    Schieweck A, Salthammer T (2011) Indoor air quality in passive-type museum showcases. J Cult Heritage 12(2):205–213CrossRefGoogle Scholar
  246. 246.
    López-Aparicio S et al (2010) Measurement of organic and inorganic pollutants in microclimate frames for paintings. e-Preserv Sci 7:59–70Google Scholar
  247. 247.
    Risholm-Sundman M et al (1998) Emissions of acetic acid and other volatile organic compounds from different species of solid wood. Eur J Wood Wood Prod 56(2):125–129CrossRefGoogle Scholar
  248. 248.
    Oikawa T et al (2005) Volatile organic compounds from wood and their influences on museum artifact materials I. Differences in wood species and analyses of causal substances of deterioration. J Wood Sci 51(4):363–369CrossRefGoogle Scholar
  249. 249.
    Sabbioni C, Ghedinia N, Bonazza A (2003) Organic anions in damage layers on monuments and buildings. Atmos Environ 37:1261–1269CrossRefGoogle Scholar
  250. 250.
    Tétreault J (2003) Airborne pollutants in museums, galleries, and archives: risk assessment, control strategies and preservation management. Ottawa, Canadian Conservation InstituteGoogle Scholar
  251. 251.
    Linnow K, Halsberghe L, Steiger M (2007) Analysis of calcium acetate efflorescences formed on ceramic tiles in a museum environment. J Cult Heritage 8:44–52CrossRefGoogle Scholar
  252. 252.
    Gibson LT et al (1997) Investigation of the composition of a unique efflorescence on calcareous museum artifacts. Anal Chim Acta 337:253–264CrossRefGoogle Scholar
  253. 253.
    Tetreault J et al (2003) Corrosion of copper and lead by formaldehyde, formic and acetic acid vapours. Stud Conserv 48:237–250CrossRefGoogle Scholar
  254. 254.
    Ryhl-Svendsen M (2008) Corrosivity measurements of indoor museum environments using lead coupons as dosimeters. J Cult Heritage 9:285–293CrossRefGoogle Scholar
  255. 255.
    Brimblecombe P, Grossi CM (2012) Carbonyl compounds indoors in a changing climate. Chem Cent J 6:21CrossRefGoogle Scholar
  256. 256.
    Dupont A-L, Tétreault J (2000) Cellulose degradation in an acetic acid environment. Stud Conserv 45:201–210Google Scholar
  257. 257.
    Strlič M et al (2011) The effect of volatile organic compounds and hypoxia on paper degradation. Polym Degrad Stab 96:608–615CrossRefGoogle Scholar
  258. 258.
    Bonaduce I et al (2013) The role of organic and inorganic indoor pollutants in museum environments in the degradation of dammar varnish. Analyst 138(2):487–500CrossRefGoogle Scholar
  259. 259.
    La Nasa J et al (2014) Effects of acetic acid vapour on the ageing of alkyd paint layers: multi-analytical approach for the evaluation of the degradation processes. Polym Degrad Stab 105:257–264CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly
  2. 2.Institute for the Conservation and Promotion of Cultural HeritageNational Research Council of ItalySesto FiorentinoItaly

Personalised recommendations