Problems with research methods in medical device big data analytics

  • Kenneth David StrangEmail author
Regular Paper


This paper reviews the literature as well as subject matter expert opinions and examines how research methods are being applied in medical device big data analytics. The focus of the study is to identify benefits and illustrate problems when applying certain research methods with healthcare big data. The intended audience is high-level healthcare decision makers, data science researchers, and healthcare big data practitioners. The key results address unintended access to healthcare data, statistical sampling violations with the use of healthcare big data, and the challenges associated with statistical false positives in big data. Solutions for these problems are proposed along with recommendations for further research.


Healthcare big data Big data research methods Statistical techniques Privacy 


Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.


  1. 1.
    Salleh, K.A., Janczewski, L.: Technical, organizational and environmental security and privacy issues of big data: a literature review. Proc. Comput. Sci. J. 100(1), 19–28 (2016)Google Scholar
  2. 2.
    Berrar, D., Dubitzky, W.: Should significance testing be abandoned in machine learning? Int. J. Data Sci. Anal. (2018). Google Scholar
  3. 3.
    Strang, K.D., Sun, Z.: Scholarly big data body of knowledge: what is the status of privacy and security? Ann. Data Sci. 4(1), 1–17 (2017). Google Scholar
  4. 4.
    Sun, Z., Strang, K.D., Li, R.: Ten bigs of big data: a multidisciplinary framework. In: Proceedings of 10th ACM International Conference on Research and Practical Issues of Enterprise Information Systems, IFIP TC8 working group 8.9, Austria. pp. 550–661 (2016)Google Scholar
  5. 5.
    Kessel, P., et al.: Insights on Governance, Risk and Compliance: Big Data, Changing the Way Businesses Compete and Operate. Ernest and Young, London (2014)Google Scholar
  6. 6.
    Eastin, M.S., et al.: Living in a big data world: predicting mobile commerce activity through privacy concerns. Comput. Hum. Behav. 58(1), 214–220 (2016)Google Scholar
  7. 7.
    de Montjoye, Y.A., Pentland, A.S.: Response to comment on “Unique in the shopping mall: on the reidentifiability of credit card me tadata”. Sci. J. 351(6279), 1274 (2016)Google Scholar
  8. 8.
    Strang, K.D., Sun, Z.: Analyzing relationships in terrorism big data using Hadoop and statistics. J. Comput. Inf. Syst. 56(5), 55–65 (2016). Google Scholar
  9. 9.
    Vajjhala, N.R., Strang, K.D., Sun, Z.: Statistical modeling and visualizing of open big data using a terrorism case study. In: Open Big Data Conference. IEEE, Rome, Italy (2015)Google Scholar
  10. 10.
    Filkins, B.L., et al.: Privacy and security in the era of digital health: what should translational researchers know and do about it? Am. J. Transl. Res. 8(3), 1560–1580 (2016)Google Scholar
  11. 11.
    Vajjhala, N.R., Strang, K.D.: Measuring organizational-fit through socio-cultural big data. J. New Math. Nat. Comput. 13(2), 145–158 (2017). Google Scholar
  12. 12.
    Chen, C.L.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. J. 275(1), 314–317 (2014)MathSciNetGoogle Scholar
  13. 13.
    Strang, K.D.: Palgrave Handbook of Research Design in Business and Management. Palgrave Macmillan, New York (2015). ISBN 978-1-137-48495-6Google Scholar
  14. 14.
    Jovanovi, U., Stimec, A., Vladusi, D.: Big-data analytics: a critical review and some future directions. Int. J. Bus. Intell. Data Min. 10(4), 337–355 (2015)Google Scholar
  15. 15.
    Terry, N.: Navigating the incoherence of big data reform proposals. J. Law Med. Ethics 43(1), 44–47 (2015)Google Scholar
  16. 16.
    Sun, Z., Strang, K.D., Pambel, F.: Privacy and security in the big data paradigm. J. Comput. Inf. Syst. (2018). Google Scholar
  17. 17.
    Hoffman, S., Podgurski, A.: Big bad data: law, public health, and biomedical databases. J. Law Med. Ethics 41, 56–60 (2013)Google Scholar
  18. 18.
    Ekbia, H., et al.: Big data, bigger dilemmas: a critical review. J. Assoc. Inf. Sci. Technol. 66(8), 1523–1545 (2015)Google Scholar
  19. 19.
    Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manag. 35(2), 137–144 (2015)Google Scholar
  20. 20.
    Strang, K.D.: Socio-cultural distrust of Internet information. Int. J. Trust Manag. Comput. Commun. 4(2), 95–110 (2018)Google Scholar
  21. 21.
    van Loenen, B., Kulk, S., Ploeger, H.: Data protection legislation: a very hungry caterpillar: the case of mapping data in the European Union. Gov. Inf. Q. 33(2), 338–345 (2016)Google Scholar
  22. 22.
    Korstanje, M.E., Strang, K.D.: Comparing the socio-political ethics of fighting terrorism with extreme self-defense. In: IRMA (ed.) Violent Extremism: Breakthroughs in Research and Practice, pp. 504–524. Information Resources Management Association, Hershey (2019). Google Scholar
  23. 23.
    Kshetri, N.: Big datas impact on privacy, security and consumer welfare. Telecommun. Policy 38(11), 1134–1145 (2014)Google Scholar
  24. 24.
    Thorpe, J.H., Gray, E.A.: Law and the Public’s Health: big data and public health—navigating privacy laws to maximize potential. Public Health Rep. 130(2), 171–175 (2015)Google Scholar
  25. 25.
    De Zwart, M., Humphreys, S., Van Dissel, B.: Surveillance, big data and democracy: lessons for Australia from the US and UK. Univ. N. S. W. Law J. 37(2), 713–747 (2014)Google Scholar
  26. 26.
    Strang, K.D.: Exploring the relationship between global terrorist ideology and attack methodology. Risk Manag. J. 17(2), 65–90 (2015). Google Scholar
  27. 27.
    Strang, K.D., Alamieyeseigha, S.: What and where are the risks of international terrorist attacks. In: IRMA (ed.) Violence and Society: Breakthroughs in Research and Practice, pp. 455–476. Information Resources Management Association (IRMA), Hershey (2017)Google Scholar
  28. 28.
    Lichtblau, E., Weilandaug, N.: Hacker Releases More Democratic Party Files, Renewing Fears of Russian Meddling, p. A12. New York Times, New York City (2016)Google Scholar
  29. 29.
    Lusher, S.J., et al.: Data-driven medicinal chemistry in the era of big data. Drug Discov. Today 19(7), 859–868 (2014)Google Scholar
  30. 30.
    Thorpe, J.H., Gray, E.A.: Law and the Public’s Health: big data and public health—navigating privacy laws to maximize potential. Public Health Rep. 130, 171 (2015)Google Scholar
  31. 31.
    ADA: Harnessing big data to help stop diabetes American Diabetes Association stragtegy. Am. J. Manag. Care 9(1), 1–4 (2015)MathSciNetGoogle Scholar
  32. 32.
    Rothstein, M.A.: Ethical issues in big data health research: currents in contemporary bioethics. J. Law Med. Ethics 43, 425 (2015)Google Scholar
  33. 33.
    Zhong, R.Y., et al.: A big data approach for logistics trajectory discovery from RFID-enabled production data. Int. J. Prod. Econ. 165, 260–272 (2015)Google Scholar
  34. 34.
    Vaidhyanathan, S., Bulock, C.: Knowledge and dignity in the era of big data. Ser. Libr. 66, 49 (2014)Google Scholar
  35. 35.
    Vaidhyanathan, S., Bulock, C.: Knowledge and dignity in the era of big data. Ser. Libr. 66(1–4), 49–64 (2014)Google Scholar
  36. 36.
    Leszczynski, A.: Spatial big data and anxieties of control. Environ. Plan. D Soc. Space 33(6), 965–984 (2015)Google Scholar
  37. 37.
    Hogarth, R.M., Soyer, E.: Using simulated experience to make sense of big data. MIT Sloan Manag. Rev. 56(2), 49–54 (2015)Google Scholar
  38. 38.
    Zikopoulos, P., et al.: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill Osborne Media, New York (2011)Google Scholar
  39. 39.
    Ward, J.C.: Oncology reimbursement in the era of personalized medicine and big data. J. Oncol. Pract. 10(2), 83–86 (2014)Google Scholar
  40. 40.
    Shen, Y., Zhang, Y.: Transmission protocol for secure big data in two-hop wireless networks with cooperative jamming. Inf. Sci. 281, 201–210 (2014)MathSciNetzbMATHGoogle Scholar
  41. 41.
    van Otterlo, M.: Automated experimentation in Walden 3.0: the next step in profiling, predicting, control and surveillance. Surveill. Soc. 12(2), 255–272 (2014)Google Scholar
  42. 42.
    Al-Ameen, M., Liu, J., Kwak, K.: Security and privacy issues in wireless sensor networks for healthcare applications. J. Med. Syst. 36(1), 93–101 (2012)Google Scholar
  43. 43.
    Angiuli, O., Blitzstein, J., Waldo, J.: How to de-identify your data. Commun. ACM 58(12), 48–55 (2015)Google Scholar
  44. 44.
    Wang, H., Jiang, X., Kambourakis, G.: Special issue on security, privacy and trust in network-based big data. Inf. Sci. 318, 48–50 (2015)MathSciNetGoogle Scholar
  45. 45.
    Shull, F.: The true cost of mobility? IEEE Softw. 31, 5–9 (2014)Google Scholar
  46. 46.
    Tahir, H., Tahir, R., McDonald-Maier, K.: On the security of consumer wearable devices in the Internet of Things. PLoS One 13, e0195487 (2018). Google Scholar
  47. 47.
    Brown, B.: HIPAA beyond HIPAA: ONCHIT, ONC, AHIC, HITSP, and CCHIT. J. Health Care Compliance 10(41), 1–21 (2008)Google Scholar
  48. 48.
    Ohm, P.: Broken promises of privacy: responding to the surprising failure of anonymization. UCLA Law Rev. J. 57(1), 1701–1818 (2010)Google Scholar
  49. 49.
    Strang, K.D., Alamieyeseigha, S.: What and where are the risks of international terrorist attacks: a descriptive study of the evidence. Int. J. Risk Conting. Manag. 4(1), 1–18 (2015). Google Scholar
  50. 50.
    IBM: IBM SPSS Statistics for Windows, Version 21. International Business Machines Corporation (IBM), Armonk (2013)Google Scholar
  51. 51.
    Couper, M.P.: Is the sky falling? New technology, changing media, and the future of surveys. Surv. Res. Methods J. 7(1), 145–156 (2013)MathSciNetGoogle Scholar
  52. 52.
    Varian, H.R.: Big data: new tricks for econometrics. J. Econ. Perspect. 28(2), 3–27 (2014)Google Scholar
  53. 53.
    Al-Janabi, S., et al.: Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egypt. Inform. J. 18, 113–122 (2016)Google Scholar
  54. 54.
    Strang, K.D.: Homeowner behavioral intent to evacuate after flood warnings. Int. J. Risk Conting. Manag. 2(3), 1–28 (2013). Google Scholar
  55. 55.
    Strang, K.D.: Logistic planning with nonlinear goal programming models in spreadsheets. Int. J. Appl. Logist. 2(4), 1–14 (2012)Google Scholar
  56. 56.
    Lazer, D.M., Kennedy, R., King, G., et al.: The parable of Google Flu: traps in big data analysis. Sci. J. 343, 1203 (2014)Google Scholar
  57. 57.
    Fan, J., Han, F., Liu, H.: Challenges of big data analysis. Natl. Sci. Rev. J. 1(1), 293–314 (2014)Google Scholar
  58. 58.
    Strang, K.D.: Selecting research techniques for a method and strategy. In: Strang, K.D. (ed.) Palgrave Handbook of Research Design in Business and Management, pp. 63–80. Palgrave Macmillan, New York (2015)Google Scholar
  59. 59.
    Hair, J.F., Black, W.C., Babin, B.J., et al.: Multivariate Data Analysis, 6th edn. Prentice-Hall, Upper Saddle River (2006)Google Scholar
  60. 60.
    Strang, K.D.: Man versus math: behaviorist exploration of post-crisis non-banking asset management. J. Asset Manag. 13(5), 348–467 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Management and TechnologyAPPC Research and Walden UniversityMinneapolisUSA

Personalised recommendations