Characterizing negative sentiments in at-risk populations via crowd computing: a computational social science approach

  • Jesus Garcia-Mancilla
  • Jose E. Ramirez-MarquezEmail author
  • Carlo Lipizzi
  • Gregg T. Vesonder
  • Victor M. Gonzalez
Regular Paper


Drawing on psychological theory, we created a new approach to classify negative sentiment tweets and presented a subset of unclassified tweets to humans for categorization. With these results, a tweet classification distribution was built to visualize how the tweets can fit in different categories. The approach developed through visualization and classification of data could be an important base to measure the efficiency of a machine classifier with psychological diagnostic criteria as the base (Thelwall et al. in J Assoc Inf Sci Technol 62(4):406–418, 2011). Nonetheless, this proposed system is used to identify red flags in at-risk population for further intervention, due to the need to be validated through therapy with an expert.


Crowd computing Depression characterization Twitter 


  1. 1.
    Association, A.P.: Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Association, Washington (2013)CrossRefGoogle Scholar
  2. 2.
    Beck, A., Ward, C., Mendelson, M., Mock, J., Erbaugh, J.: An inventory for measuring. Arch. Gen. Psychiatry 4, 561–571 (1961)CrossRefGoogle Scholar
  3. 3.
    Becker, H., Naaman, M., Gravano, L.: Beyond Trending Topics: Real-World Event Identification on Twitter. Technical reports, Columbia University (2011)Google Scholar
  4. 4.
    Bhattacharya, S., Tran, H., Srinivasan, P.: Discovering health beliefs in twitter. In: AAAI Fall Symposium: Information Retrieval and Knowledge Discovery in Biomedical Text. Arlington, Virginia, USA (2012)Google Scholar
  5. 5.
    Bouazizi, M., Ohtsuki, T.: A pattern-based approach for multi-class sentiment analysis in twitter. IEEE Access 5, 20617–20639 (2017)CrossRefGoogle Scholar
  6. 6.
    Brogueira, G., Batista, F., Carvalho, J.P.: A smart system for twitter corpus collection, management and visualization. Int. J. Technol. Hum. Interact. (IJTHI) 13(3), 13–32 (2017)CrossRefGoogle Scholar
  7. 7.
    Culotta, A.: Estimating county health statistics with twitter. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1335–1344. ACM Press, Toronto, ON, Canada (2014).
  8. 8.
    De Choudhury, M.: Can social media help us reason about mental health? In: Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion, pp. 1243–1244. International World Wide Web Conferences Steering Committee, Seoul, Republic of Korea (2014)Google Scholar
  9. 9.
    De Choudhury, M.: You’re happy, i’m happy: diffusion of mood expression on twitter. In: Proceedings of HCI Korea, pp. 169–179. Hanbit Media, Inc., Seoul, Republic of Korea (2014)Google Scholar
  10. 10.
    De Choudhury, M., Counts, S., Horvitz, E.: Social media as a measurement tool of depression in populations. In: Proceedings of the 5th Annual ACM Web Science Conference, pp. 47–56. ACM, Paris, France (2013)Google Scholar
  11. 11.
    De Choudhury, M., Counts, S., Horvitz, E.J., Hoff, A.: Characterizing and predicting postpartum depression from shared facebook data. In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 626–638. ACM Press, Baltimore, Maryland, USA (2014).
  12. 12.
    De Choudhury, M., Gamon, M., Counts, S., Horvitz, E.: Predicting depression via social media. ICWSM 13, 1–10 (2013)Google Scholar
  13. 13.
    De Choudhury, M., Morris, M.R., White, R.W.: Seeking and sharing health information online: comparing search engines and social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1365–1376. ACM Press, Toronto, ON, Canada (2014).
  14. 14.
    Doulamis, N.D., Doulamis, A.D., Kokkinos, P., Varvarigos, E.M.: Event detection in twitter microblogging. IEEE Trans. Cybern. 46(12), 2810–2824 (2016)CrossRefGoogle Scholar
  15. 15.
    Gill, J., Harrison, B., Wood, T.J., Ramnanan, C.J., Jalali, A.: Investigating the use of social networking tools among medical students. Educ. Med. J. 6(4), e82–e86 (2014)CrossRefGoogle Scholar
  16. 16.
    Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford 1(12) (2009)Google Scholar
  17. 17.
    González Celis, A.L., Padilla, A.: Calidad de vida y estrategias de afrontamiento ante problemas y enfermedades en ancianos de ciudad de méxico. Universitas Psychologica 5(3) (2006)Google Scholar
  18. 18.
    Hasan, M., Agu, E., Rundensteiner, E.: Using hashtags as labels for supervised learning of emotions in twitter messages. In: ACM SIGKDD Workshop on Health Informatics, New York, USA (2014)Google Scholar
  19. 19.
    Huang, M., Cao, Y., Dong, C.: Modeling rich contexts for sentiment classification with lstm. arXiv preprint arXiv:1605.01478 (2016)
  20. 20.
    Kobayashi, Y., Mozgovoy, M., Munezero, M.: Analysis of emotions in real-time twitter streams. Informatica 40(4), 387 (2016)Google Scholar
  21. 21.
    Kogan, M., Palen, L., Anderson, K.M.: Think local, retweet global: Retweeting by the geographically-vulnerable during hurricane sandy. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 981–993. ACM Press, Vancouver, BC, Canada (2015).
  22. 22.
    Kumar, M., Dredze, M., Coppersmith, G., De Choudhury, M.: Detecting changes in suicide content manifested in social media following celebrity suicides. In: Proceedings of the 26th ACM Conference on Hypertext & Social Media, pp. 85–94. ACM Press, Guzelyurt, TRNC, Cyprus (2015).
  23. 23.
    Layman, L., Sigurdsson, G.: Using amazon’s mechanical turk for user studies: eight things you need to know. In: 2013 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, pp. 275–278. IEEE, Baltimore, Maryland, USA (2013).
  24. 24.
    Li, J., Wang, X., Hovy, E.: What a nasty day: exploring mood-weather relationship from twitter. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 1309–1318. ACM Press, Shanghai, China (2014).
  25. 25.
    Lin, H., Tov, W., Qiu, L.: Emotional disclosure on social networking sites: the role of network structure and psychological needs. Comput. Hum. Behav. 41, 342–350 (2014)CrossRefGoogle Scholar
  26. 26.
    Lipizzi, C., Iandoli, L., Marquez, J.E.R.: Extracting and evaluating conversational patterns in social media: a socio-semantic analysis of customers reactions to the launch of new products using twitter streams. Int. J. Inf. Manag. 35(4), 490–503 (2015)CrossRefGoogle Scholar
  27. 27.
    Martinez, V.R., Mancilla, A., Gonzalez, V.M.: Tweeting over the border: an empirical study of transnational migration in San Diego and Tijuana. arXiv preprint arXiv:1507.05989 (2015)
  28. 28.
    Mok, W.T., Sing, R., Jiang, X., See, S.L.: Investigation of social media on depression. In: 2014 9th International Symposium on Chinese Spoken Language Processing (ISCSLP), pp. 488–491. IEEE, Singapore (2014).
  29. 29.
    Nambisan, P., Luo, Z., Kapoor, A., Patrick, T.B., Cisler, R., others: Social media, big data, and public health informatics: Ruminating behavior of depression revealed through twitter. In: 2015 48th Hawaii International Conference on System Sciences (HICSS), pp. 2906–2913. IEEE, Kauai, Hawaii (2015)Google Scholar
  30. 30.
    O’Dea, B., Wan, S., Batterham, P.J., Calear, A.L., Paris, C., Christensen, H.: Detecting suicidality on twitter. Internet Interv. 2(2), 183–188 (2015)CrossRefGoogle Scholar
  31. 31.
    Peters, M.E., Ammar, W., Bhagavatula, C., Power, R.: Semi-supervised sequence tagging with bidirectional language models. arXiv preprint arXiv:1705.00108 (2017)
  32. 32.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM, Raleigh, NC, USA (2010)Google Scholar
  33. 33.
    Sueki, H.: The association of suicide-related twitter use with suicidal behaviour: a cross-sectional study of young internet users in Japan. J. Affect. Disord. 170, 155–160 (2015)CrossRefGoogle Scholar
  34. 34.
    Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment in twitter events. J. Assoc. Inf. Sci. Technol. 62(2), 406–418 (2011)CrossRefGoogle Scholar
  35. 35.
    Tsugawa, S., Kikuchi, Y., Kishino, F., Nakajima, K., Itoh, Y., Ohsaki, H.: Recognizing depression from twitter activity. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 3187–3196. ACM Press, Seoul, Republic of Korea (2015).
  36. 36.
    Tsugawa, S., Mogi, Y., Kikuchi, Y., Kishino, F., Fujita, K., Itoh, Y., Ohsaki, H.: On estimating depressive tendencies of twitter users utilizing their tweet data. In: Virtual Reality (VR), 2013 IEEE, pp. 1–4. IEEE, Orlando, Florida, USA (2013)Google Scholar
  37. 37.
    Wilson, M.L., Ali, S., Valstar, M.F.: Finding information about mental health in microblogging platforms: a case study of depression. In: Proceedings of the 5th Information Interaction in Context Symposium, pp. 8–17. ACM Press, Regensburg, Germany (2014).
  38. 38.
    Yang, W., Mu, L.: Gis analysis of depression among twitter users. Appl. Geogr. 60, 217–223 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceITAMMexico CityMexico
  2. 2.School of Systems and EnterprisesStevens Institute of TechnologyHobokenUSA

Personalised recommendations