Advertisement

Evaluation of sulfate ions in degrading armed concrete structures of a sewage treatment station: case study

  • Wellington MazerEmail author
  • Jhenifer Mesquita de Araújo
  • Arthur Medeiros
  • Alessandra Monique Weber
Research Article
  • 6 Downloads

Abstract

Concrete is susceptible to attack in places considered aggressive, such as wastewater treatment stations. Sulfate ions attack is very common in these places, resulting in accelerated degradation of the concrete, which can compromise any reinforced concrete structure. In this context, the present research aims to evaluate the pathological manifestations caused by these ions, analyzing the sulfate content in concrete samples taken from a station and their porosity. The result obtained in the sulfate content analysis was an average of 7.84%, values well above the acceptable maximum limit that would be on average 0.5%. In relation to the porosity of the sample, an increase of 10% was observed, on average, considering a sample of reinforced concrete without attack.

Keywords

Concrete Sulfate ions Wastewater treatment stations Deterioration Porosity 

Notes

References

  1. 1.
    ABNT (2006) Concreto de cimento portland – preparo, controle e recebimento – procedimento, NBR 12655. Associação Brasileira de Normas Técnicas, Rio de JaneiroGoogle Scholar
  2. 2.
    Bellmann F, Erfurt W, Ludwig H-M (2012) Field performance of concrete exposed to sulphate and low pH conditions from natural and industrial sources. Cem Concr Compos 34(1):86–93.  https://doi.org/10.1016/j.cemconcomp.2011.07.009 CrossRefGoogle Scholar
  3. 3.
    Costa, R. M. (2004) Análise de propriedades mecânicas do concreto deteriorado pela ação de sulfato mediante utilização do upv. Thesis, Escola de Engenharia da Universidade Federal de Minas Gerais, Belo Horizonte, BrasilGoogle Scholar
  4. 4.
    Coutinho JS (2001) Durabilidade: ataque por sulfatos. FEUP, PortoGoogle Scholar
  5. 5.
    Hoppe Filho J, Souza DJ, Medeiros MHF, Pereira E, Portella KF (2015) Ataque de matrizes cimentícias por sulfato de sódio: adições minerais como agentes mitigadores. Cerâmica 61:168–177.  https://doi.org/10.1590/0366-69132015613581905 CrossRefGoogle Scholar
  6. 6.
    Jiang G, Wightman E, Donose BC, Yuan Z, Bond PL, Keller J (2014) The role of iron in sulfide induced corrosion of sewer concrete. Water Res 49:166–174.  https://doi.org/10.1016/j.watres.2013.11.007 CrossRefGoogle Scholar
  7. 7.
    Jiang G, Keller J, Bond PL (2014) Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion. Water Res 65:157–169.  https://doi.org/10.1016/j.watres.2014.07.026 CrossRefGoogle Scholar
  8. 8.
    Jiang G, Sun X, Keller J, Bond PL (2015) Identification of controlling factors for the initiation of corrosion of fresh concrete sewers. Water Res 80:30–40.  https://doi.org/10.1016/j.watres.2015.04.015 CrossRefGoogle Scholar
  9. 9.
    Joseph AP, Keller J, Bustamante H, Bond PL (2012) Surface neutralization and H2S oxidation at early stages of sewer corrosion: influence of temperature, relative humidity and H2S concentration. Water Res 46:4235–4245.  https://doi.org/10.1016/j.watres.2012.05.011 CrossRefGoogle Scholar
  10. 10.
    Laboratórios de Meios Porosos e Propriedades Termofísicas (2016). Pesquisa, porosimetria por injeção de mercúrio. Consultada em. http://www.lmpt.ufsc.b. no dia 28/10/2016
  11. 11.
    Liu Z, Zhang F, Deng D, Xie Y, Long G (2017) Physical sulfate attack on concrete lining—A field case analysis. Case Stud Constr Mater 6(1):206–212CrossRefGoogle Scholar
  12. 12.
    Lorente S, Yssorche-Cubaynes MP, Auger J (2011) Sulfate transfer through concrete: migration and diffusion results. Cem Concr Compos 33(1):735–741CrossRefGoogle Scholar
  13. 13.
    Maes M, Belie N (2014) Resistance of concrete and mortar against combined attack of chloride and sodium sulphate. Cem Concr Compos 53:59–72.  https://doi.org/10.1016/j.cemconcomp.2014.06.013 CrossRefGoogle Scholar
  14. 14.
    Mazer, W, Macioski G, Soto N, Baettker E (2014) Determinação do teor de íons sulfato em estruturas de concreto. In: Anais do XX Congresso Brasileiro de Engenharia Química. Florianópolis, BrasilGoogle Scholar
  15. 15.
    Mehta KP, Monteiro PJ (2008) Concreto: microestrutura, propriedades e materiais. IBRACON, São PauloGoogle Scholar
  16. 16.
    Nehdi ML, Suleiman AR, Solimam AM (2014) Investigation of concrete exposed to dual sulfate attack. Cem Concr Res 64:42–53.  https://doi.org/10.1016/j.cemconres.2014.06.002 CrossRefGoogle Scholar
  17. 17.
    Neville AM (1982) Propriedades do concreto. Editora Pini, São PauloGoogle Scholar
  18. 18.
    Pêssoa JRC, Dominguéz JS, Carvalho G, Assis JT (2014) Porosidade do concreto determinada por microtomografia com raio x e processamento de imagem. Engenharia Estudo e Pesquisa, ABPE 14(2):20–26Google Scholar
  19. 19.
    Pinheiro-Alves, M. T., Gomà, F., and Jalali, S. (2007). Um cimento mais sustentável frente a um ataque severo por sulfatos. In: Proc. of 3th Congresso Nacional da Construção, Universidade de Coimbra, Coimbra, PortugalGoogle Scholar
  20. 20.
    Pinto J, Takagi EM (2007) Sistemas de impermeabilização e proteção para obras de saneamento. Concreto e Construções 34(47):73–79Google Scholar
  21. 21.
    Quantachrome Instruments (2013) Poremaster series—automated mercury porosimetersGoogle Scholar
  22. 22.
    Rheinheimer B, Khoe SS (2013) Ataque por sulfatos em estações de tratamento de efluentes, Final Paper. Universidade Federal do Paraná, CuritibaGoogle Scholar
  23. 23.
    Sharma K, Derlon N, Hu S, Yuan Z (2014) Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm. Water Res 49:175–185.  https://doi.org/10.1016/j.watres.2013.11.019 CrossRefGoogle Scholar
  24. 24.
    Skalny J, Marchand J, Odler I (2002) Sulfate attack on concrete. Son Press, New YorkGoogle Scholar
  25. 25.
    Souza, R. B. (2006) Suscetibilidade de pastas de cimento ao ataque por sulfatos – método de ensaio acelerado, Dissertation, Escola Politécnica da Universidade de São Paulo, São Paulo, BrasilGoogle Scholar
  26. 26.
    Standard Methods for the Examination of Water and Wastewater (1997) SO4—Sulfate, 4500, Standard Methods CommitteeGoogle Scholar
  27. 27.
    Tang SW, Yao Y, Andrade C, Li ZJ (2015) Recent durability studies on concrete structure. Cem Concr Res 78:143–154.  https://doi.org/10.1016/j.cemconres.2015.05.021 CrossRefGoogle Scholar
  28. 28.
    Zhang M, Chen J, Ly Y, Wang D, Ye J (2013) Study on the expansion of concrete under attack of sulfate and sulfate–chloride ions. Constr Build Mater 39:26–32.  https://doi.org/10.1016/j.conbuildmat.2012.05.003 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Academic Department of Civil ConstructionFederal and Technological University of Parana (UTFPR)CuritibaBrazil

Personalised recommendations