Advertisement

Behavior of a Warm Mix Asphalt Containing a Blast Furnace Slag

  • Jairo Fernando Ruíz-Ibarra
  • Hugo Alexander Rondón-Quintana
  • Saieth Baudilio Chaves-PabónEmail author
Research paper
  • 26 Downloads

Abstract

Currently, many studies seek to find materials that are friendlier towards the environment. Warm mix asphalt (WMA) technology helps to decrease manufacturing temperature in traditional hot mix asphalts (HMA), which reduces emissions that are detrimental to the environment. For the case of asphalt pavements, WMA technology, which uses recycled materials such as blast furnace slag (BFS), this could be an interesting alternative technique. Reutilizing these types of industrial waste materials for roadway project constructions could help to minimize negative impacts on the environment. In this study, the coarse fraction of natural aggregate in a control HMA was replaced with BFS. Additionally, a chemical additive was used to lower mixing temperature by 30 °C, and thus manufacture WMA. Marshall, indirect tensile strength, resilient modulus and permanent deformation tests were carried out. This additive helps to reduce air void content, reduces mixing and compacting temperatures and increases asphalt stiffness. Studied WMA that has a 12.5% substitution of coarse natural aggregate fraction with BFS, results in a significant increase in stiffness (under monotonic and cyclic loads), as well as an increase in resistance to moisture damage and to permanent deformations, when compared to control HMA.

Keywords

Blast furnace slag Hot mix asphalt Warm mix asphalt Resistance under monotonic and cyclic loads 

Notes

Acknowledgements

The authors wish to express their thanks to SENA, Universidad Distrital Francisco José de Caldas and Universidad Militar Nueva Granada for financial support for this research.

References

  1. 1.
    Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50(1):40–57.  https://doi.org/10.1016/j.resconrec.2006.05.008 CrossRefGoogle Scholar
  2. 2.
    Wang G, Wang Y, Gao Z (2010) Use of steel slag as a granular material: volume expansion prediction and usability criteria. J Hazard Mater 184(1–3):555–560.  https://doi.org/10.1016/j.jhazmat.2010.08.071 CrossRefGoogle Scholar
  3. 3.
    Oluwasola EA, Hainin MR, Aziz MMA (2015) Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction. Transp Geotech 2:47–55.  https://doi.org/10.1016/j.trgeo.2014.09.004 CrossRefGoogle Scholar
  4. 4.
    Nouvion S, Jullien A, Sommier M, Basuyau V (2009) Environmental modeling of blast furnace slag aggregate production. Road Mater Pavement Design 10(4):715–745.  https://doi.org/10.1080/14680629.2009.9690224 CrossRefGoogle Scholar
  5. 5.
    Akbarnejad S, Houben LJM, Molenaar AAA (2014) Application of aging methods to evaluate the long-term performance of road bases containing blast furnace slag materials. Road Mater Pavement Design 15(3):488–506.  https://doi.org/10.1080/14680629.2014.907196 CrossRefGoogle Scholar
  6. 6.
    Al-Rawashdeh AS, Sargand S (2014) Performance assessment of a warm asphalt binder in the presence of water by using surface free energy concepts and nanoscale techniques. J Mater Civ Eng 26(5):803–811.  https://doi.org/10.1061/(ASCE)MT.1943-5533.0000866 CrossRefGoogle Scholar
  7. 7.
    Modarres A, Rahmanzadeh M (2014) Application of coal waste powder as filler in hot mix asphalt. Constr Build Mater 66:476–483.  https://doi.org/10.1016/j.conbuildmat.2014.06.002 CrossRefGoogle Scholar
  8. 8.
    Pasandín AR, Pérez I (2015) The influence of the mineral filler on the adhesion between aggregates and bitumen. Int J Adhes Adhes 58:53–58.  https://doi.org/10.1016/j.ijadhadh.2015.01.005 CrossRefGoogle Scholar
  9. 9.
    Rondón HA, Fernández WD, Ruge JC, Patiño D, Vacca H, Reyes FA (2018) Characterization of blast furnace slag for road projects. Rev Ing de Constr RIC 33(1):83–92.  https://doi.org/10.4067/S0718-50732018000100083 CrossRefGoogle Scholar
  10. 10.
    Rondón HA, Ruge JC, Patiño D, Vacca H, Reyes FA, Farias M (2018) Use of blast furnace slag as a substitute for the fine fraction of aggregates in an asphalt mixture. J Mater Civ Eng.  https://doi.org/10.1061/(ASCE)MT.1943-5533.0002409 CrossRefGoogle Scholar
  11. 11.
    Al-Hdabi A, Al Nageim H (2017) Improving asphalt emulsion mixtures properties containing cementitious filler by adding GGBS. J Mater Civ Eng.  https://doi.org/10.1061/(asce)mt.1943-5533.0001859 CrossRefGoogle Scholar
  12. 12.
    Nassar AI, Mohammed MK, Thom N, Parry T (2016) Mechanical, durability and microstructure properties of Cold Asphalt Emulsion Mixtures with different types of filler. Constr Build Mater 114:352–363.  https://doi.org/10.1016/j.conbuildmat.2016.03.112 CrossRefGoogle Scholar
  13. 13.
    FHWA—Federal Highway Administration Research and Technology (2008) Coordinating, developing, and delivering highway transportation innovations—user guidelines for waste and byproduct materials in pavement construction, Report Publication (Number: FHWA-RD-97-148). FHWA, Washington, DC. https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/intro.cfm
  14. 14.
    Airey GD, Collop AC, Thom NH (2004) Mechanical performance of asphalt mixtures incorporating slag and glass secondary aggregates. In: Proceedings of the 8th Conference on Asphalt Pavements Southern Africa (CAPSA’04). CSIR Transportek, Asphalt Academy, Pretoria, South AfricaGoogle Scholar
  15. 15.
    Rondón HA, Fernández WD, Zafra C (2016) Behavior of a warm mix asphalt using a chemical additive to foam the asphalt binder. Rev Fac de Ing Univ de Antioq 78:129–138.  https://doi.org/10.17533/udea.redin.n78a17 CrossRefGoogle Scholar
  16. 16.
    Sterling V (2012) Special mixture design considerations and methods for warm mix asphalt: a supplement to NCHRP Report 673: a manual for design of hot mix asphalt with commentary. National Cooperative Highway Research Program—NCHRP (Report 714). Project Number: 09-43, Transportation Research Board, Washington, DC.  https://doi.org/10.17226/14615
  17. 17.
    Silva H, Oliveira J, Ferreira C, Pereira P (2010) Assessment of the performance of warm mix asphalts in road pavements. Int J Pavement Res Technol 3(3):119–127Google Scholar
  18. 18.
    Sharma A, Shafi Mir M, Farooq MA (2018) Performance of WMA additives under freeze–thaw action. Road Mater Pavement Design.  https://doi.org/10.1080/14680629.2018.1444668 CrossRefGoogle Scholar
  19. 19.
    You Z, Goh SW (2008) Laboratory evaluation of warm mix asphalt: a preliminary study. Int J Pavement Res Technol 1(1):34–40Google Scholar
  20. 20.
    Bonaquist R (2011) Mix design practices for warm mix asphalt. NCHRP (Report 691). Project Number: 09-43, Transportation Research Board—TRB, Washington, DC.  https://doi.org/10.17226/14488 CrossRefGoogle Scholar
  21. 21.
    Mohammad LN, Hassan MM, Vallabhu B, Kabir S (2015) Louisiana’s experience with WMATechnologies: mechanistic, environmental, and economic analysis. J Mater Civil Eng.  https://doi.org/10.1061/(ASCE)MT.1943-5533.0001143 CrossRefGoogle Scholar
  22. 22.
    Biro S, Gandhi T, Amirkhanian S (2009) Midrange temperature rheological properties of warm asphalt binders. J Mater Civ Eng 21(7):316–323.  https://doi.org/10.1061/(ASCE)0899-1561(2009)21:7(316) CrossRefGoogle Scholar
  23. 23.
    Ran J, Xu S, Li M, Ji J (2010) Research on the performances of warm asphalt and warm mix asphalt with Sasobit. In: ICCTP 2010: integrated transportation systems, green intelligent reliable 2010. American Society of Civil Engineering, International Conference of Chinese Transportation Professionals, Beijing, pp 3725–3737.  https://doi.org/10.1061/41127(382)402
  24. 24.
    Rondón HA, Noguera JA, Reyes FA (2015) A review of warm mix asphalt technology: technical, economical and environmental aspects. Ing e Investig 35(3):5–18.  https://doi.org/10.15446/ing.investig.v35n3.50463 CrossRefGoogle Scholar
  25. 25.
    Liu S, Cao W, Fang J (2010) Orthogonal test research of asphalt rubber modified by warm asphalt additive. In: ICCTP 2010: integrated transportation systems, green intelligent reliable 2010. American Society of Civil Engineering, International Conference of Chinese Transportation Professionals, Beijing, pp 3480–3492.  https://doi.org/10.1061/41127(382)376
  26. 26.
    Habal A, Singh D (2017) Moisture damage resistance of GTR-modified asphalt binders containing WMA additives using the surface free energy approach. J Perform Constr Facil.  https://doi.org/10.1061/(ASCE)CF.1943-5509.0000995 CrossRefGoogle Scholar
  27. 27.
    Singh D, Ashish PK, Kataware A, Habal A (2018) Effects of WMA additives and hydrated lime on high-stress and high-temperature performance of Elvaloy®- and PPA-modified asphalt binder. Road Mater Pavement Design.  https://doi.org/10.1080/14680629.2018.1446040 CrossRefGoogle Scholar
  28. 28.
    Howard IL, Doyle JD, Cox BC (2013) Merits of reclaimed asphalt pavement-dominated warm mixed flexible pavement base layers. Road Mater Pavement Design 14(S2):106–128.  https://doi.org/10.1080/14680629.2013.812834 CrossRefGoogle Scholar
  29. 29.
    Zhao S, Huang B, Shu X, Moore J (2015) Effects of WMA technologies on asphalt binder blending. J Mater Civ Eng.  https://doi.org/10.1061/(ASCE)MT.1943-5533.0001381 CrossRefGoogle Scholar
  30. 30.
    Kim D, Norouzi A, Kass S, Liske T, Kim R (2017) Mechanistic performance evaluation of pavement sections containing RAP and WMA additives in Manitoba. Constr Build Mater 133:39–50.  https://doi.org/10.1016/j.conbuildmat.2016.12.035 CrossRefGoogle Scholar
  31. 31.
    Farooq MA, Mir MS, Sharma A (2018) Laboratory study on use of RAP in WMA pavements using rejuvenator. Constr Build Mater 168:61–72.  https://doi.org/10.1016/j.conbuildmat.2018.02.079 CrossRefGoogle Scholar
  32. 32.
    Frigio F, Raschia S, Steiner D, Hofko B, Canestrari F (2016) Aging effects on recycled WMA porous asphalt mixtures. Constr Build Mater 123:712–718.  https://doi.org/10.1016/j.conbuildmat.2016.07.063 CrossRefGoogle Scholar
  33. 33.
    Robjent L, Dosh W (2009) Warm-Mix asphalt for rural county roads. Cold Regions Engineering 2009: cold regions impacts on research, design, and construction. American Society of Civil Engineering, Duluth, pp 438–454.  https://doi.org/10.1061/41072(359)43 CrossRefGoogle Scholar
  34. 34.
    Zhu S, Chen F, Yin H (2017) Simulation and validation of asphalt foaming process for virtual experiments and optimization of WMA production. Road Mater Pavement Design 18(sup4):144–164.  https://doi.org/10.1080/14680629.2017.1389093 CrossRefGoogle Scholar
  35. 35.
    INVIAS—Instituto Nacional de Vías (2013) Especificaciones Generales para Construcción de Carreteras y normas de ensayo para materiales de carreteras [General Road and Highways Construction Specifications and Standard Tests for Materials]. INVIAS, Bogotá, DC, Colombia. https://www.invias.gov.co/index.php/informacion-institucional/139-documento-tecnicos/1988-especificaciones-generales-de-construccion-de-carreteras-ynormas-de-ensayo-para-materiales-de-carreteras

Copyright information

© Iran University of Science and Technology 2019

Authors and Affiliations

  1. 1.Tecnología en Obras CivilesServicio Nacional de Aprendizaje SENABogotá D.C.Colombia
  2. 2.Facultad de Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá D.C.Colombia
  3. 3.Programa de Ingeniería Civil, Facultad de Estudios a DistanciaUniversidad Militar Nueva GranadaCajicáColombia

Personalised recommendations