Advertisement

International Journal of Civil Engineering

, Volume 17, Issue 1, pp 33–43 | Cite as

Consolidation of Single-Component Grouting Mortars in the Course of Dewatering: Redistribution of Particles

  • Bou-Young Youn-ČaleEmail author
  • Rolf Breitenbücher
Research Paper
  • 21 Downloads

Abstract

Two contradictory requirements are basically demanded on single-component grouting mortars. On the one hand, a sufficient workability lasting for several hours; on the other hand, a rapid development of shear strength immediately after grouting. The latter is normally achieved through dewatering of the mortar into the surrounding soil. During dewatering also particles are transported to the soil and lead to a clogging in the interface, which can have a significant influence on the further dewatering process and thus on the consolidation behavior of the grout. In this research study, the dewatering behavior and redistribution of the particles of single-component grouting mortars have been systematically investigated under variation of the relevant material-specific parameters, such as the granulometry of the fines and aggregates. For the determination of the filtrate water, a filter press test was developed, simulating the conditions within the annular gap. For the evaluation of the redistribution of the particles, the particle size distribution, density and water content of individual layers of the dewatered grout were determined over the specimen height. The investigations revealed a significant influence of the granulometry of the particles on the grout properties. At early mortar ages, the amounts of filtrate water were at the same level independent of the granulometry and specific surface of the binder. However, the shear strengths increased steadily with increasing specific surface of the binder and age. With regard to the granulometry broken particles with a rough surface provided an essential contribution to the development of shear strength.

Keywords

Single-component grouts Mechanized tunneling Dewatering Consolidation Redistribution Shear strength 

Notes

Acknowledgements

Financial support was provided by the German Science Foundation (DFG) in the framework of the Collaborative Research Center SFB 837 “Interaction Modeling in Mechanized Tunneling”. This support is gratefully acknowledged.

References

  1. 1.
    Youn B (2016) Untersuchungen zum Entwässerungsverhalten und zur Scherfestigkeitsentwicklung von einkomponentigen Ringspaltmörteln im Tunnelbau, Dissertation, Ruhr University Bochum, Schriftenreihe des Instituts für Konstruktiven Ingenieurbau, Heft 2016-04Google Scholar
  2. 2.
    Thewes M, Budach C (2009) Grouting of the annular gap in shield tunnelling—an important factor for minimisation of settlements and production performance. In: Proceedings of the ITA-AITES World Tunnel Congress. BudapestGoogle Scholar
  3. 3.
    EFNARC—Experts for Specialised Construction and Concrete Systems (2017) Specification and Guidelines for the use of specialist products for Mechanised Tunnelling (TBM) in Soft Ground and Hard Rock. http://www.efnarc.org, http://www.efnarc.org/pdf/TBMGuidelinesApril05.pdf. Accessed 2 November 2017
  4. 4.
    Breitenbücher R (2014) “Tunnelbau im Schildvortrieb – Spezielle Anforderungen an Beton im Tunnelbau” Beton-Kalender. In: Bergmeister K, Fingerloos F, Wörner J-D (eds) Unterirdisches Bauen, Grundbau, Eurocode 7. Band 1, Ernst & Sohn, BerlinGoogle Scholar
  5. 5.
    Astner M (2005) “Spezialbaustoffe im Bauvorhaben—Hofoldinger Stollen”, Zement Beton 1, no. 4, pp 12–15Google Scholar
  6. 6.
    Youn B, Breitenbücher R (2014) Influencing parameters of the grout mix on the properties of annular gap grouts in mechanized tunneling. Tunn Undergr Space Technol 43:290–299CrossRefGoogle Scholar
  7. 7.
    Könemann F, Tauch B (2011) “Entwicklung eines durchlässigen Ringspaltmaterials für den Schildvortrieb—Stand der Forschung”, Taschenbuch für den Tunnelbau. VGE Verlag, Essen, pp 337–363Google Scholar
  8. 8.
    Thienert C, Pulsfort M (2011) Segment design under consideration of the material used to fill the annular gap / Tübbingbemessung unter Berücksichtigung der Eigenschaften des Ringspaltmaterials”. Geomech Tunn 4(6):665–680CrossRefGoogle Scholar
  9. 9.
    DIN 66145:1976-04 (1976) Darstellung von Korn-(Teilchen-)größenverteilungen—RRSB-Netz. Deutsches Institut für Normung, BerlinGoogle Scholar
  10. 10.
    Puntke W (2002) “Wasseranspruch von feinen Kornhaufwerken”, beton 5/2002, pp 242–248Google Scholar
  11. 11.
    Teichmann T (2008) Einfluss der Granulometrie und des Wassergehaltes auf die Festigkeit und Gefügedichtigkeit von Zementstein”, Dissertation, University Kassel, Schriftenreihe Baustoffe und Massivbau, Heft 12Google Scholar
  12. 12.
    Zement-Merkblatt (2012) Betontechnik B2, 1.2012, “Gesteinskörnungen für Normalbeton. InformationsZentrum Beton GmbH, ErkrathGoogle Scholar
  13. 13.
    DIN 4127:2014-02 (2014) “Erd- und Grundbau—Prüfverfahren für Stützflüssigkeiten im Schlitzwandbau und für deren Ausgangsstoffe”, Deutsches Institut für Normung, BerlinGoogle Scholar
  14. 14.
    Herrenknecht M, Thewes M, Budach C (2011) The development of earth pressure shields: from the beginning to the present/Entwicklung der Erddruckschilde: Von den Anfängen bis zur Gegenwart. Geomech Tunn 4(1):11–35Google Scholar
  15. 15.
    DIN 4094-4:2002-01 (2002) Baugrund—Felduntersuchungen—Teil 4: Flügelscherversuche. Deutsches Institut für Normung, BerlinGoogle Scholar
  16. 16.
    DIN 1045-2:2008-08 (2008) “Tragwerke aus Beton, Stahlbeton und Spannbeton—Teil 2: Beton—Festlegung, Eigenschaften, Herstellung und Konformität—Anwendungsregeln zu DIN EN 206-1”. Deutsches Institut für Normung, BerlinGoogle Scholar

Copyright information

© Iran University of Science and Technology 2018

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental Engineering, Institute for Building MaterialsRuhr University BochumBochumGermany

Personalised recommendations