Multichannel Local Ternary Co-occurrence Pattern for Content-Based Image Retrieval

  • Megha AgarwalEmail author
  • R. P. Maheshwari
Research Paper


In this paper, a novel content descriptor, multichannel local ternary co-occurrence pattern (MCLTCoP) is proposed for image retrieval. Standard local ternary co-occurrence pattern extracts the relationship between center pixel and surrounding pixels by computing gray-level differences in terms of ternary edges. In the modern scenario due to proliferation of color images, it is not sufficient to investigate image appearance variations by analyzing only one type of feature such as color or texture. In order to address this problem, proposed texture patterns are developed to unfold inter-channel variability of R, G and B channels with oppugnant color channel V of the HSV color space. Texture statistics extracted in such a manner not only explore two different color channels but mutual local directional information is also incorporated. This paves a way for improvement in retrieval results. Image retrieval experiments are performed to observe the effectiveness of the proposed feature and compare results with the existing multichannel techniques over benchmark image database, i.e., Corel 1k. Retrieval results show superiority of the proposed approach against state-of-the-art techniques in terms of average precision and average recall.


Content-based image retrieval (CBIR) Local binary pattern (LBP) Corel database 


  1. Agarwal M, Singhal A (2018) Haar-like local ternary pattern for image retrieval. In: International conference in industrial and information system, pp 1–5Google Scholar
  2. Agarwal M, Singhal A (2019) DoG based local ternary pattern for image retrieval. In: International conference on signal processing and communication, pp 1–5Google Scholar
  3. Agarwal M, Singhal A, Lall B (2018) 3D local ternary co-occurrence patterns for natural, texture, face and bio in medical image retrieval. Neurocomputing 313:333–345CrossRefGoogle Scholar
  4. Agarwal M, Singhal A, Lall B (2019) Multi-channel local ternary pattern for content-based image retrieval. Pattern Anal Appl. Google Scholar
  5. Dey M, Balasubramanian R, Verma M (2016) A novel colour and texture based image retrieval technique using multi-resolution local extrema peak valley pattern and RGB colour histogram. Pattern Anal Appl 19:1159–1179MathSciNetCrossRefGoogle Scholar
  6. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106CrossRefGoogle Scholar
  7. Dubey SR, Singh SK, Singh RK (2015) Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Process Lett 22(9):1215–1219CrossRefGoogle Scholar
  8. Fadaei S, Amirfattahi R, Ahmadzadeh MR (2017) New content-based image retrieval system based on optimised integration of DCD, wavelet and curvelet features. IET Image Proc 11(2):89–98CrossRefGoogle Scholar
  9. Felipe JC, Traina AJ, Traina Jr. C (2003) Retrieval by content of medical images using texture for tissue identification. In: Proceedings of the 16th IEEE symposium on computer-based medical systems, pp 175–180Google Scholar
  10. Gonde AB, Maheshwari RP, Balasubramanian R (2010) Multiscale ridgelet transform for content based image retrieval. In: IEEE 2nd international advance computing conference, pp 139–144Google Scholar
  11. Guo Z, Zhang L, Zhang D (2010a) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663MathSciNetCrossRefzbMATHGoogle Scholar
  12. Guo Z, Zhang L, Zhang D (2010b) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recogn 43:706–719CrossRefzbMATHGoogle Scholar
  13. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621CrossRefGoogle Scholar
  14. Heikkilä M, Pietikäinen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. In: Computer vision, graphics and image processing, pp 58–69Google Scholar
  15. Jacob IJ, Srinivasagan KG, Jayapriya K (2014) Local oppugnant color texture pattern for image retrieval system. Pattern Recogn Lett 42:72–78CrossRefGoogle Scholar
  16. Jhanwar N, Chaudhuri S, Seetharaman G, Zavidovique B (2004) Content based image retrieval using motif cooccurrence matrix. Image Vis Comput 22(14):1211–1220CrossRefGoogle Scholar
  17. Khawaja TA, Shahida U, Amjad I (2019) Content based image retrieval using image features information fusion. Inf Fusion 51:76–99CrossRefGoogle Scholar
  18. Kokare M, Biswas PK, Chatterji N (2006) Rotation-invariant texture image retrieval using rotated complex wavelet filters. IEEE Trans Syst Man Cybern Part B Cybern 36(6):1273–1282CrossRefGoogle Scholar
  19. Lee YH, Bang S (2019) Improved image retrieval and classification with combined invariant features and color descriptor. J Ambient Intell Humaniz Comput 10:2255–2264CrossRefGoogle Scholar
  20. Li J, Wang JZ (2003) Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans Pattern Anal Mach Intell 25(9):1075–1088CrossRefGoogle Scholar
  21. Liu Y, Zhang D, Lu G, Ma WY (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40(1):262–282CrossRefzbMATHGoogle Scholar
  22. Mary BT, Vasuki A (2019) An efficient image retrieval framework using fused information feature. Comput Electr Eng 75:46–60CrossRefGoogle Scholar
  23. Moghaddam HA, Dehaji MN (2013) Enhanced Gabor wavelet correlogram feature for image indexing and retrieval. Pattern Anal Appl 16(2):163–177MathSciNetCrossRefGoogle Scholar
  24. Murala S, Wu QJ (2013) Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119(6):399–412CrossRefGoogle Scholar
  25. Murala S, Wu QJ (2014) Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J Biomed Health Inf 18(3):929–938CrossRefGoogle Scholar
  26. Murala S, Maheshwari RP, Balasubramanian R (2012a) Directional local extrema patterns: a new descriptor for content based image retrieval. Int J Multimed Inf Retr 1(3):191–203CrossRefzbMATHGoogle Scholar
  27. Murala S, Maheshwari RP, Balasubramanian R (2012b) Local tetra patterns: a new feature descriptor for content based image retrieval. IEEE Trans Image Process 21(5):2874–2886MathSciNetCrossRefzbMATHGoogle Scholar
  28. Murala S, Maheshwari RP, Balasubramanian R (2012c) Local Mmaximum edge binary patterns: a new descriptor for image retrieval and object tracking. Signal Process 92(6):1467–1479CrossRefGoogle Scholar
  29. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29:51–59CrossRefGoogle Scholar
  30. Papakostas GA, Koulouriotis DE, Karakasis EG, Tourassis VD (2013) Moment based local binary patterns: a novel descriptor for invariant pattern recognition applications. Neurocomputing 99:358–371CrossRefGoogle Scholar
  31. Qian X, Hua XS, Chen P, Ke L (2011) PLBP: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recogn 44(10):2502–2515CrossRefGoogle Scholar
  32. Reddy AH, Chandra NS (2015) Local oppugnant color space extrema patterns for content based natural and texture image retrieval. Int J Electron Commun 69:290–298CrossRefGoogle Scholar
  33. Reddy PVB, Reddy ARM (2014) Content based image indexing and retrieval using directional local extrema and magnitude patterns. AEU Int J Electron Commun 68(7):637–643CrossRefGoogle Scholar
  34. Ren H, Sun J, Hao Y, Yan X, Liu Y (2014) Uniform local derivative patterns and their application in face recognition. J Signal Process Syst 74(3):405–416CrossRefGoogle Scholar
  35. Shan C, Gong S, McOwan PW (2009) Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis Comput 27(6):803–816CrossRefGoogle Scholar
  36. Siqueira FR, Schwartz WR, Pedrini H (2013) Multi-scale gray level co-occurrence matrices for texture description. Neurocomputing 120:336–345CrossRefGoogle Scholar
  37. Song W, Zhang Y, Liu F, Chai Z, Ding F, Qian X, Park SC (2018) Taking advantage of multi-regions-based diagonal texture structure descriptor for image retrieval. Expert Syst Appl 96:347–357CrossRefGoogle Scholar
  38. Subrahmanyam M, Jonathan Wu QM, Maheshwari RP, Balasubramanian R (2013) Modified color motif co-occurrence matrix for image indexing and retrieval. Comput Electr Eng 39(3):762–774CrossRefGoogle Scholar
  39. Swain MJ, Ballard DH (1992) Indexing via color histograms. In: Active perception and robot vision, pp 261–273Google Scholar
  40. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650MathSciNetCrossRefzbMATHGoogle Scholar
  41. Tang Z, Zhang X, Dai X, Yang J, Wu T (2013) Robust image hash function using local color features. Int J Electron Commun 67:717–722CrossRefGoogle Scholar
  42. Tiwari AK, Kanhangad V, Pachori RB (2017) Histogram refinement for texture descriptor based image retrieval. Sig Process Image Commun 53:73–85CrossRefGoogle Scholar
  43. Vadivel A, Shamik S, Majumdar AK (2007) An integrated color and intensity co-occurrence matrix. Pattern Recogn Lett 28:974–983CrossRefGoogle Scholar
  44. Verma M, Balasubramanian R, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269CrossRefGoogle Scholar
  45. Vipparthi SK, Nagar SK (2014) Multi-joint histogram based modelling for image indexing and retrieval. Comput Electr Eng 40(8):163–173CrossRefGoogle Scholar
  46. Xu Y, Li Z, Yang J, Zhang D (2017) Survey of dictionary learning algorithms for face recognition. IEEE Access 5:8502–8514CrossRefGoogle Scholar
  47. Yuan F (2014) Rotation and scale invariant local binary pattern based on high order directional derivatives for texture classification. Digit Signal Proc 26:142–152CrossRefGoogle Scholar
  48. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with higher-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544MathSciNetCrossRefzbMATHGoogle Scholar
  49. Zhang D, Islam MM, Lu G (2012) A review on automatic image annotation techniques. Pattern Recogn 45(1):346–362CrossRefGoogle Scholar
  50. Zhao G, Pietikainen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928CrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  1. 1.Jaypee Institute of Information TechnologyNoidaIndia
  2. 2.Indian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations