Advertisement

Two MRAC Designs for the MEMS-Based AC Voltage Reference Source

  • Behzad FarzaneganEmail author
  • Ehsan Niafar
  • Ehsan Ranjbar
  • Amir Abolfazl Suratgar
Research Paper
  • 26 Downloads

Abstract

This paper presents two well-known designs of model reference adaptive control (MRAC) based on state and output feedback, to control microelectromechanical system AC voltage reference source (MEMS AC VRS). The best performance of AC voltage reference is achieved when the movable plate of MEMS capacitor is located and stayed under the pull-in point. This study proposes two MRAC schemes to place the movable plate near the pull-in point in the presence of parameter uncertainties. Moreover, the asymptotic stability of the closed-loop system is guaranteed by the Lyapunov theory and Barbalat’s Lemma. Finally, simulation results verify the effectiveness of theoretical methods.

Keywords

AC voltage reference source Adaptive control Electrostatic force MEMS Pull-in point 

References

  1. Ansari U, Bajodah AH (2018) Adaptive fuzzy sliding mode control: application to satellite launch vehicle’s attitude control. Mechatron Syst Control (Former Control Intell Syst) 46(1):15–25MathSciNetGoogle Scholar
  2. Blard F, Bounouh A, Bélières D, Camon H (2011) Very high stability achievement in MEMS based AC voltage references. In: 2011 IEEE 24th international conference on micro electro mechanical systems, pp 656–659Google Scholar
  3. Bounouh A, Camon H, Bélières D, Blard F, Ziadé F (2011) MEMS AC voltage reference for miniaturized instrumentation and metrology. In: Computer standards and interfaces, xVI IMEKO TC4 symposium exploring new frontiers of instrumentation and methods for electrical and electronic measurements” and XIII international workshop on ADC modelling and testing vol 33(2), pp 159–164Google Scholar
  4. Che LF, Xiong B, Li YF, Wang YL (2009) A novel electrostatic-driven tuning fork micromachined gyroscope with a bar structure operating at atmospheric pressure. J Micromech Microeng 20:015025CrossRefGoogle Scholar
  5. Dierikx EF (2007) A mems-stabilized AC voltage reference source. IEEE Trans Instrum Meas 56(2):313–315CrossRefGoogle Scholar
  6. Kärkkäinen A, Oja A, Kyynäräinen J, Kuisma H, Seppä H (2004) Stability of electrostatic actuation of MEMS. Phys Scr 2004(T114):193CrossRefGoogle Scholar
  7. Kärkkäinen A, Pesonen N, Suhonen M, Oja AS, Manninen A, Tisnek N, Seppa H (2005) Mems-based AC voltage reference. IEEE Trans Instrum Meas 54(2):595–599CrossRefGoogle Scholar
  8. Khalil H (2002) Nonlinear systems. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  9. Mehrnezhad A, Suratgar AA, Khatami S, Sobhiyeh S (2013) A mathematical dynamic model for static and dynamic behaviours of mems-based AC voltage reference source. In: 2013 21st Iranian conference on electrical engineering (ICEE), pp 1–5Google Scholar
  10. Meyer KR (1965) On the existence of lyapunov function for the problem of lur’e. J Soc Ind Appl Math Ser A Control 3(3):373–383.  https://doi.org/10.1137/0303025 CrossRefzbMATHGoogle Scholar
  11. Narendra KS, Annaswamy AM (1989) Stable adaptive systems. Prentice-Hall Inc, Upper Saddle RiverzbMATHGoogle Scholar
  12. Park S, Horowitz R (2003) Adaptive control for the conventional mode of operation of MEMS gyroscopes. J Microelectromech Syst 12(1):101–108CrossRefGoogle Scholar
  13. Popov VM (1973) Hyperstability of control systems. Springer, New YorkCrossRefGoogle Scholar
  14. Ranjbar E, Mehrnezhad A, Suratgar AA (2017) Adaptive sliding mode control of MEMS AC voltage reference source. J Control Sci Eng 2017:14MathSciNetCrossRefGoogle Scholar
  15. Ranjbar E, Mehrnezhad A, Suratgar AA, Khatami S (2014) Adaptive control of mems-based AC voltage reference source. In: 2014 22nd Iranian conference on electrical engineering (ICEE), pp 1336–1341Google Scholar
  16. Rocha LA, Cretu E, Wolffenbuttel RF (2004) Analysis and analytical modeling of static pull-in with application to mems-based voltage reference and process monitoring. J Microelectromech Syst 13(2):342–354CrossRefGoogle Scholar
  17. Seppa H, Kyynarainen J, Oja A (2001) Microelectromechanical systems in electrical metrology. IEEE Trans Instrum Meas 50(2):440–444CrossRefGoogle Scholar
  18. Shirazi FA, Velni JM, Grigoriadis KM (2011) An LPV design approach for voltage control of an electrostatic MEMS actuator. J Microelectromech Syst 20(1):302–311CrossRefGoogle Scholar
  19. Suhonen M, Seppa H, Oja AS, Heinila M, Nakki I (1998) AC and DC voltage standards based on silicon micromechanics. In: 1998 conference on precision electromagnetic measurements digest (Cat. No.98CH36254), pp 23–24Google Scholar
  20. Suratgar AA, Hashemipoor SS, Hoseini H (2009) Noise effect reduction on a mems-based AC voltage reference source using artificial neural network. In: 2009 2nd IEEE international conference on computer science and information technology, pp 179–183Google Scholar
  21. Sze S (1981) Physics of semiconductor devices, Wiley-Interscience publication. Wiley, HobokenGoogle Scholar
  22. Trusov AA, Schofield AR, Shkel AM (2008) A substrate energy dissipation mechanism in in-phase and anti-phase micromachined z-axis vibratory gyroscopes. J Micromech Microeng 18(9):095016CrossRefGoogle Scholar
  23. Welikala S, Liyanage D, Abeysekara AD, Ekanayake MPB, Godaliyadda RI, Wijayakulasooriya JV (2016) Control strategy for navigation of a reconnaissance robotic system. Control Intell Syst.  https://doi.org/10.2316/journal.201.2016.3.201-2761 CrossRefGoogle Scholar
  24. Zhou C, Zhao X, Yu Q (2018) Adaptive robust control for active suspension system using t-s fuzzy model approach. Mechatron Syst Control (Former Control Intell Syst) 46(2):46–54MathSciNetGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  1. 1.MEMS Dynamics and Control Research Group, Industrial Control Lab, Department of Electrical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations