Advertisement

Efficient Design of Reflectarrays Using Planar Microstrip and 3D All-Metal Unit Cells for 5G Applications

  • Rania ElsharkawyEmail author
  • Moataza Hindy
  • A.-R. Sebak
  • Adel Saleeb
  • El-Sayed M. El-Rabaie
Research Paper
  • 27 Downloads

Abstract

This paper presents two designs of reflectarrays with two different unit cells: a novel broadband microstrip unit cell and a 3D all-metal unit cell. The microstrip unit cell consists of two concentric octagonal rings plus an octagonal patch with an empty cross inside. On the other hand, the all-metal unit cell is composed of a pure copper cuboid. These reflectarrays are designed to work around 28 GHz for suitable 5G operation. A pyramidal horn antenna is used for the feeding purpose. The F/D ratio is equal to one. The reflectarray is 107 mm × 107 mm in dimensions. The simulation results show that the reflectarray based on the microstrip unit cell achieves a 1-dB gain-bandwidth of about 31.2% with a gain equal to 27.2 dB at 28 GHz. On the other hand, the all-metal reflectarray achieves a 1-dB gain-bandwidth of 14.5% and a gain equal to 28.5 dB at 28 GHz. From the obtained results, it is clear that the microstrip reflectarray is superior from the gain-bandwidth perspective, while the all-metal reflectarray is superior from the gain perspective. The microstrip reflectarray has been fabricated, and its performance has been measured. A good agreement between the simulation and measurement results has been achieved.

Keywords

5G mobile communications Millimeter waves Microstrip reflectarrays All-metal reflectarrays 

References

  1. Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surv Tutor 18(3):1617–1655CrossRefGoogle Scholar
  2. An W, Xu S, Yang F, Gao J (2014a) A Ka-band reflectarray antenna integrated with solar cells. IEEE Trans Antennas Propag 62(11):5539–5546MathSciNetCrossRefzbMATHGoogle Scholar
  3. An W, Xu S, Yang F (2014b) A metal-only reflectarray antenna using slot-type elements. IEEE Antennas Wirel Propag Lett 13:1553–1556.  https://doi.org/10.1109/LAWP.2014.2342376 CrossRefGoogle Scholar
  4. Bialkowski ME, Sayidmarie KH (2008) Investigations into phase characteristics of a single-layer reflectarray employing patch or ring elements of variable size. IEEE Trans Antennas Propag 56(11):3366–3372CrossRefGoogle Scholar
  5. CST-Computer Simulation Technology, Documentation (2005). Available online: www.cst.com. Accessed 15 Oct 2018
  6. Deng R, Yang F, Xu S (2014) Design and comparison of four different reflectarray antennas towards THz applications. In: Proceedings of the AP-S, pp 1019–1020Google Scholar
  7. Deng R, Yang F, Xu S, Li M (2016) A 100-GHz metal-only reflectarray for high-gain antenna applications. IEEE Antennas Wirel Propag Lett 15:178–181CrossRefGoogle Scholar
  8. Elsharkawy R, Sebak A-R, Hindy M, Haraz OM, Saleeb A, El-Rabaie El-SM (2015a) Polarization insensitive Ka-band reflectarray antenna. In: The proceedings of the AP-S, pp 2483–2484Google Scholar
  9. Elsharkawy R, Sebak A-R, Hindy M, Haraz OM, Saleeb A, El-Rabaie El-SM (2015b) Single layer polarization independent reflectarray antenna for future 5G cellular applications. In: International conference on information and communication technology researchGoogle Scholar
  10. Guha D, Antar Y (2011) Microstrip and printed antennas new trends, techniques and applications. Wiley, New YorkGoogle Scholar
  11. Honarbakhsh B (2016) Light-weight wide-band metal-only reflectarray antennas. Appl Comput Electrom J 31(4):468–472Google Scholar
  12. Huang J (1995) A high-gain circularly polarized Ka-band microstrip reflectarray. IEEE Trans Microw Theory Tech 43(6):1315–1321CrossRefGoogle Scholar
  13. Huang K, Edwards DJ (2008) Millimetre wave antennas for gigabit wireless communications. Wiley, New YorkCrossRefGoogle Scholar
  14. Huang J, Encinar JA (2008) Reflectarray antennas. Wiley, New YorkGoogle Scholar
  15. Lee W, Yi M, Yang JW, Yoon YJ, So J (2015) Design of an inverse metal only reflectarray antenna for millimeter wave application. In: The 2015 international workshop on antenna technologyGoogle Scholar
  16. Mahmoud A, Kishk AA, Hao Z, Hong W (2016) Ka-band circularly polarized reflectarray using a double-layers cross slot. IEEE Antennas Propag Mag 58(4):60–68CrossRefGoogle Scholar
  17. Yi M, Lee W, So J (2014) Design of cylindrically conformed metal reflectarray antennas for millimeter wave applications. Electron Lett 50(20):1409–1410CrossRefGoogle Scholar
  18. Zhang S (2017) Three-dimensional printed millimetre wave dielectric resonator reflectarray. IET Microw Antennas Propag 11(14):2005–2009CrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  • Rania Elsharkawy
    • 1
    Email author
  • Moataza Hindy
    • 1
  • A.-R. Sebak
    • 2
  • Adel Saleeb
    • 3
  • El-Sayed M. El-Rabaie
    • 3
  1. 1.Electronics Research InstituteDokki, GizaEgypt
  2. 2.ECE DepartmentConcordia UniversityMontrealCanada
  3. 3.Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations