Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Circular Simple Shear Extrusion as an Alternative to Simple Shear Extrusion Technique

Abstract

Recently, simple shear extrusion (SSE) was introduced to fabricate ultra-fine-grained materials. It was designed for billets with square cross sections and was investigated well previously. This study aims to introduce a new alternative design of simple shear extrusion process with a circular cross section, which is named circular simple shear extrusion (CSSE). Therefore, the finite element analysis is applied for investigating the deformation behavior during the CSSE process. The results show that the CSSE process fills the die with less back-pressure and the strain values are closer to theoretical ones in comparison with SSE with a square cross section. Moreover, this new alternative is needed to lower the extrusion pressure compared to SSE with a square cross section. In addition, the contact pressure and the maximum principal stress in a die with a circular cross section are lower in comparison with the square one which leads to a longer service life of CSSE’s die. Hence, this new geometry will provide more potential in terms of industrial applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    ABAQUS™/CAE User's Manual. Dassault Systems. ABAQUS™ Ver. 6.14.

References

  1. Akhtar SS, Arif AFM (2009) Fatigue failure of extrusion dies: effect of process parameters and design features on die life. J Fail Anal Prev 10(1):38–49. https://doi.org/10.1007/s11668-009-9304-4

  2. Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988. https://doi.org/10.1063/1.1721448

  3. Bagherpour E, Reihanian M, Ebrahimi R (2012a) On the capability of severe plastic deformation of twining induced plasticity (TWIP) steel. Mater Des 36:391–395. https://doi.org/10.1016/j.matdes.2011.11.055

  4. Bagherpour E, Reihanian M, Ebrahimi R (2012b) Processing twining induced plasticity steel through simple shear extrusion. Mater Des 40:262–267. https://doi.org/10.1016/j.matdes.2012.03.055

  5. Bagherpour E, Qods F, Ebrahimi R (2014) Effect of geometric parameters on deformation behavior of simple shear extrusion. IOP Conf Ser Mater Sci Eng 63:012046. https://doi.org/10.1088/1757-899x/63/1/012046

  6. Bagherpour E, Ebrahimi R, Qods F (2015) An analytical approach for simple shear extrusion process with a linear die profile. Mater Des 83:368–376. https://doi.org/10.1016/j.matdes.2015.06.023

  7. Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2016a) Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal. Mater Sci Eng A 666:324–338. https://doi.org/10.1016/j.msea.2016.04.080

  8. Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2016b) Texture changes during simple shear extrusion (SSE) processing of pure copper. Mater Trans 57:1386–1391. https://doi.org/10.2320/matertrans.mh201501

  9. Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2016c) Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique. Mater Sci Eng A 674:221–231. https://doi.org/10.1016/j.msea.2016.08.001

  10. Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2017) Nanostructured pure copper fabricated by simple shear extrusion (SSE): a correlation between microstructure and tensile properties. Mater Sci Eng A 679:465–475. https://doi.org/10.1016/j.msea.2016.10.068

  11. Beygelzimer Y, Prilepo D, Kulagin R, Grishaev V, Abramova O, Varyukhin V, Kulakov M (2011) Planar twist extrusion versus twist extrusion. J Mater Process Technol 211(3):522–529. https://doi.org/10.1016/j.jmatprotec.2010.11.006

  12. Chen Y, Wang Q, Lin J, Zhang L, Zhai C (2007) Fabrication of bulk UFG magnesium alloys by cyclic extrusion compression. J Mater Sci 42(17):7601–7603. https://doi.org/10.1007/s10853-007-1889-y

  13. Ebrahimi R, Najafizadeh A (2004) A new method for evaluation of friction in bulk metal forming. J Mater Process Technol 152(2):136–143. https://doi.org/10.1016/j.jmatprotec.2004.03.029

  14. Ebrahimi R, Pardis N (2009) Determination of strain-hardening exponent using double compression test. Mater Sci Eng A 518(1–2):56–60. https://doi.org/10.1016/j.msea.2009.04.050

  15. Ebrahimi R, Rezvani A, Bagherpour E (2018) Circular simple shear extrusion as an alternative to simple shear extrusion technique for producing bulk nanostructured materials. Proc Manuf 15:1502–1508

  16. Farzad H, Ebrahimi R (2016) Die profile optimization of rectangular cross section extrusion in plane strain condition using upper bound analysis method and simulated annealing algorithm. J Manuf Sci Eng 139(2):021006. https://doi.org/10.1115/1.4034336

  17. Figueiredo RB, de Faria GCV, Cetlin PR, Langdon TG (2012) Three-dimensional analysis of plastic flow during high-pressure torsion. J Mater Sci 48(13):4524–4532. https://doi.org/10.1007/s10853-012-6979-9

  18. Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) Review: processing of metals by equal-channel angular pressing. J Mater Sci 36(12):2835–2843. https://doi.org/10.1023/A:1017932417043

  19. Kang F, Wang JT, Su YL, Xia KN (2007) Finite element analysis of the effect of back pressure during equal channel angular pressing. J Mater Sci 42(5):1491–1500. https://doi.org/10.1007/s10853-006-0762-8

  20. Kim JG, Latypov M, Pardis N, Beygelzimer YE, Kim HS (2015) Finite element analysis of the plastic deformation in tandem process of simple shear extrusion and twist extrusion. Mater Des 83:858–865. https://doi.org/10.1016/j.matdes.2015.06.034

  21. Latypov MI, Alexandrov IV, Beygelzimer YE, Lee S, Kim HS (2012) Finite element analysis of plastic deformation in twist extrusion. Comput Mater Sci 60:194–200. https://doi.org/10.1016/j.commatsci.2012.03.035

  22. Latypov MI, Beygelzimer Y, Kim HS (2013) Comparative analysis of two twist-based SPD processes: elliptical cross-section spiral equal-channel extrusion vs. twist extrusion. Mater Trans 54:1587–1591. https://doi.org/10.2320/matertrans.mh201315

  23. Lee DJ, Kim HS (2014) Finite element analysis for the geometry effect on strain inhomogeneity during high-pressure torsion. J Mater Sci 49(19):6620–6628. https://doi.org/10.1007/s10853-014-8283-3

  24. Lin J, Wang Q, Peng L, Roven HJ (2008) Study on deformation behavior and strain homogeneity during cyclic extrusion and compression. J Mater Sci 43(21):6920–6924. https://doi.org/10.1007/s10853-008-2994-2

  25. Molaei SH, Shahbaz M, Ebrahimi R (2014) The relationship between constant friction factor and coefficient of friction in metal forming using finite element analysis. Iran J Mater Form 1(2):14–22. https://doi.org/10.22099/IJMF.2014.2290

  26. Molaei S, Ebrahimi R, Abbasi Z (2016) Upper bound analysis of barrel compression test using a new velocity field. Iran J Sci Technol Trans Mech Eng 40(1):1–10. https://doi.org/10.1007/s40997-016-0003-y

  27. Pardis N, Ebrahimi R (2009) Deformation behavior in simple shear extrusion (SSE) as a new severe plastic deformation technique. Mater Sci Eng A 527(1–2):355–360. https://doi.org/10.1016/j.msea.2009.08.051

  28. Pardis N, Ebrahimi R (2010) Different processing routes for deformation via simple shear extrusion (SSE). Mater Sci Eng A 527(23):6153–6156. https://doi.org/10.1016/j.msea.2010.06.028

  29. Pardis N, Talebanpour B, Ebrahimi R, Zomorodian S (2011) Cyclic expansion-extrusion (CEE): a modified counterpart of cyclic extrusion-compression (CEC). Mater Sci Eng A 528(25–26):7537–7540. https://doi.org/10.1016/j.msea.2011.06.059

  30. Roostaei AA, Zarei-Hanzaki A, Parsa MH, Fatemi-Varzaneh SM (2010) An analysis to plastic deformation behavior of AZ31 alloys during accumulative roll bonding process. J Mater Sci 45(16):4494–4500. https://doi.org/10.1007/s10853-010-4540-2

  31. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr Mater 39(9):1221–1227. https://doi.org/10.1016/s1359-6462(98)00302-9

  32. Segal VM (1995) Materials processing by simple shear. Mater Sci Eng A 197(2):157–164. https://doi.org/10.1016/0921-5093(95)09705-8

  33. Sheikh H, Ebrahimi R (2016) Investigation on texture evolution during cyclic expansion–extrusion (CEE) technique using crystal plasticity finite element modeling. J Mater Sci 51(22):10178–10190. https://doi.org/10.1007/s10853-016-0245-5

  34. Terada D, Inoue S, Tsuji N (2007) Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process. J Mater Sci 42(5):1673–1681. https://doi.org/10.1007/s10853-006-0909-7

  35. Tork NB, Pardis N, Ebrahimi R (2013) Investigation on the feasibility of room temperature plastic deformation of pure magnesium by simple shear extrusion process. Mater Sci Eng A 560:34–39. https://doi.org/10.1016/j.msea.2012.08.085

  36. Valiev RZ (2007) The new trends in fabrication of bulk nanostructured materials by SPD processing. J Mater Sci 42(5):1483–1490. https://doi.org/10.1007/s10853-006-1281-3

  37. Wang C, Li F, Li Q, Li J, Wang L, Dong J (2013a) A novel severe plastic deformation method for fabricating ultrafine grained pure copper. Mater Des 43:492–498. https://doi.org/10.1016/j.matdes.2012.07.047

  38. Wang C, Li F, Lu H et al (2013b) Deformation analysis of elliptical cross-section spiral equal channel extrusion technique. Rare Metal Mater Eng 42:679–683. https://doi.org/10.1016/s1875-5372(13)60055-7

  39. Yoon EY, Yoo JH, Yoon SC, Kim YK, Baik SC, Kim HS (2010) Analyses of route Bc equal channel angular pressing and post-equal channel angular pressing behavior by the finite element method. J Mater Sci 45(17):4682–4688. https://doi.org/10.1007/s10853-010-4469-5

  40. Zhu Y, Valiev RZ, Langdon TG, Tsuji N, Lu K (2010) Processing of nanostructured metals and alloys via plastic deformation. MRS Bull 35:977–981. https://doi.org/10.1557/mrs2010.702

Download references

Acknowledgements

The authors appreciate Shiraz University for the financial support (Grant No. 96-GR-ENG-15) and the research facilities used in this work.

Author information

Correspondence to R. Ebrahimi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezvani, A., Bagherpour, E. & Ebrahimi, R. Circular Simple Shear Extrusion as an Alternative to Simple Shear Extrusion Technique. Iran J Sci Technol Trans Mech Eng 44, 193–201 (2020). https://doi.org/10.1007/s40997-018-0257-7

Download citation

Keywords

  • Simple shear extrusion
  • SSE
  • Severe plastic deformation
  • Finite element analysis
  • Circular
  • CSSE