Advertisement

A Chattering-Free Finite-Time Robust Synchronization Scheme for Uncertain Chaotic Systems

  • Siamak Heidarzadeh
  • Hassan SalariehEmail author
Research Paper
  • 60 Downloads

Abstract

This paper addresses a simple chattering-free and finite-time convergent robust synchronization scheme for a general class of disturbed master and slave chaotic systems. Unlike traditional variable structure control schemes, the proposed controller does not directly include a switching function, and chattering is avoided. The term including switching function is the input of a low-pass filter where the filtered output is used in the controller. Also, numerical differentiation of master and slave state trajectories is not required to implement the controller. Stability of the proposed controller is established using a Lyapunov stability analysis and the finite-time convergence theories. Simulation results validate the effectiveness and robustness of the proposed control scheme.

Keywords

Chaos synchronization Uncertain system Chatter-free Finite-time stability Sliding mode control 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aghababa MP, Aghababa HP (2013) Adaptive finite-time synchronization of non-autonomous chaotic systems with uncertainty. J Comput Nonlinear Dyn 8:031006CrossRefGoogle Scholar
  2. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38:751–766MathSciNetCrossRefzbMATHGoogle Scholar
  3. Cai N, Jing Y, Zhang S (2010) Modified projective synchronization of chaotic systems with disturbances via active sliding mode control. Commun Nonlinear Sci Numer Simul 15:1613–1620MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cao L, Chen X (2015) Input–output linearization minimum sliding mode error feedback control for synchronization of chaotic system. Proc Inst Mech Eng Part I J Syst Control Eng 229(8):685–699CrossRefGoogle Scholar
  5. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 9:1465–1466MathSciNetCrossRefzbMATHGoogle Scholar
  6. Chen Y, Wu X, Gui Z (2010) Global synchronization criteria for a class of third-order non-autonomous chaotic systems via linear state error feedback control. Appl Math Model 34:4161–4170MathSciNetCrossRefzbMATHGoogle Scholar
  7. Chen Y, Shi Z, Lin C (2014) Some criteria for the global finite-time synchronization of two Lorenz–Stenflo systems coupled by a new controller. Appl Math Model 38:4076–4085MathSciNetCrossRefzbMATHGoogle Scholar
  8. Chen X, Park JH, Cao J, Qiu J (2017) Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances. Appl Math Comput 308:161–173MathSciNetzbMATHGoogle Scholar
  9. Chen X, Park JH, Cao J, Qiu J (2018) Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control. Neurocomputing 273(C):9–21CrossRefGoogle Scholar
  10. Du H, Shi P (2016) A new robust adaptive control method for modified function projective synchronization with unknown bounded parametric uncertainties and external disturbances. Nonlinear Dyn 85:355–363MathSciNetCrossRefzbMATHGoogle Scholar
  11. Etemadi S, Alasty A, Salarieh H (2006) Synchronization of chaotic systems with parameter uncertainties via variable structure control. Phys Lett A 357:17–21CrossRefzbMATHGoogle Scholar
  12. Fang L, Li T, Li Z, Li R (2013) Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems. Nonlinear Dyn 74:991–1002MathSciNetCrossRefzbMATHGoogle Scholar
  13. Fedele G, Ferrise A, Chiaravalloti F (2016) Uncertain master–slave synchronization with implicit minimum saturation level. Appl Math Model 40:1193–1198MathSciNetCrossRefGoogle Scholar
  14. Feng Y, Han F, Yu X (2014) Chattering free full-order sliding-mode control. Automatica 50:1310–1314MathSciNetCrossRefzbMATHGoogle Scholar
  15. Feng Y, Han F, Yu X (2016) Reply to Comments on’Chattering free full-order sliding-mode control’Automatica 50 (2014) 1310-1314. Automatica (J IFAC) 72:255–256MathSciNetCrossRefGoogle Scholar
  16. Fu G (2012) Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance. Commun Nonlinear Sci Numer Simul 17:2602–2608MathSciNetCrossRefzbMATHGoogle Scholar
  17. Genesio R, Tesi A (1992) Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28:531–548CrossRefzbMATHGoogle Scholar
  18. Huang X, Lin W, Yang B (2005) Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41:881–888MathSciNetCrossRefzbMATHGoogle Scholar
  19. Kwon O, Park JH, Lee S (2011) Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn 63:239–252MathSciNetCrossRefzbMATHGoogle Scholar
  20. Li S, Tian YP (2003) Finite time synchronization of chaotic systems. Chaos Solitons Fractals 15:303–310MathSciNetCrossRefzbMATHGoogle Scholar
  21. Li H, Liao X, Li C, Li C (2011) Chaos control and synchronization via a novel chatter free sliding mode control strategy. Neurocomputing 74(17):3212–3222CrossRefGoogle Scholar
  22. Liu Y, Li L, Feng Y (2016) Finite-time synchronization for high-dimensional chaotic systems and its application to secure communication. J Comput Nonlinear Dyn 11:051028CrossRefGoogle Scholar
  23. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141CrossRefzbMATHGoogle Scholar
  24. Mei J, Jiang M, Wang J (2013) Finite-time structure identification and synchronization of drive-response systems with uncertain parameter. Commun Nonlinear Sci Numer Simul 18:999–1015MathSciNetCrossRefzbMATHGoogle Scholar
  25. Park KB, Lee JJ (1996) Comments on “A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators”. IEEE Trans Autom Control 41:761–762CrossRefzbMATHGoogle Scholar
  26. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824MathSciNetCrossRefzbMATHGoogle Scholar
  27. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398CrossRefzbMATHGoogle Scholar
  28. Salarieh H, Shahrokhi M (2008) Adaptive synchronization of two different chaotic systems with time varying unknown parameters. Chaos Solitons Fractals 37:125–136MathSciNetCrossRefzbMATHGoogle Scholar
  29. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  30. Tran XT, Kang HJ (2015) Robust adaptive chatter-free finite-time control method for chaos control and (anti-) synchronization of uncertain (hyper) chaotic systems. Nonlinear Dyn 80:637–651MathSciNetCrossRefzbMATHGoogle Scholar
  31. Utkin VI (1978) Sliding modes and their application in variable structure systems. Mir Publishers, MoscowzbMATHGoogle Scholar
  32. Vaidyanathan S, Azar AT (2015) Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan–Madhavan chaotic systems. In: Azar A, Zhu Q (eds) Advances and applications in sliding mode control systems. Springer, Cham, pp 527–547CrossRefGoogle Scholar
  33. Vargas JA, Grzeidak E, Gularte KH, Alfaro SC (2016) An adaptive scheme for chaotic synchronization in the presence of uncertain parameter and disturbances. Neurocomputing 174:1038–1048CrossRefGoogle Scholar
  34. Wang H, Han Z, Xie Q, Zhang W (2009) Finite-time chaos synchronization of unified chaotic system with uncertain parameters. Commun Nonlinear Sci Numer Simul 14:2239–2247CrossRefGoogle Scholar
  35. Yang T, Wu CW, Chua LO (1997) Cryptography based on chaotic systems. IEEE Trans Circuits Syst I Fundam Theory Appl 44:469–472CrossRefzbMATHGoogle Scholar
  36. Yau HT (2004) Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos Solitons Fractals 22:341–347MathSciNetCrossRefzbMATHGoogle Scholar
  37. Zhihong M, Paplinski AP, Wu HR (1994) A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans Autom Control 39:2464–2469MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Shiraz University 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations