Advertisement

Forced Convective and Subcooled Flow Boiling Heat Transfer to Water–Al2O3 Microfluid in an Annular Heat Exchanger

  • A. Shaltuoki
  • S. M. Peyghambarzadeh
Research Paper
  • 17 Downloads

Abstract

An experimental study has been conducted on subcooled nucleate flow boiling heat transfer of water–Al2O3 particulate liquid inside a vertical annulus. The experimental apparatus provides the particular conditions to investigate the influence of heat flux, flow rate, inlet temperature, and particle concentration on the heat transfer coefficient in both single-phase convection and two-phase nucleate boiling regimes. Operating conditions are subcooling temperature (30–50 °C), volume flow rate (2–4 l/min), heat flux (8–110 kW/m2), and particle concentration (0.01–0.03 vol%). The experimental data is in good agreement with well-known Chen model with the accuracy of 10.84%.

Keywords

Flow boiling Chen model Annular heat exchanger 

References

  1. Ahn HS, Kim MH (2013) The boiling phenomenon of alumina nanofluid near critical heat flux. Int J Heat Mass Transf 62:718–728CrossRefGoogle Scholar
  2. Barbosa JR, Hewitt GF, Richardson SM (2003) High-speed visualization of nucleate boiling in vertical annular flow. Int J Heat Mass Transf 46:5153–5160CrossRefMATHGoogle Scholar
  3. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-newtonian flows. American Society of Mechanical Engineers, New York, pp 99–105Google Scholar
  4. Collier JG, Thome JR (1994) Convective boiling and condensation. Oxford University Press, OxfordGoogle Scholar
  5. Duangthongsuk W, Wongwises S (2008) Effect of thermo-physical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. Int Commun Heat Mass Transf 35:1320–1326CrossRefGoogle Scholar
  6. FernándezSeara J, Uhía FJ, Sieres J (2007) Laboratory practices with the Wilson plot method. Exp Heat Transf 20:123CrossRefGoogle Scholar
  7. Fritz W (1935) Maximum volume of vapor bubbles. Phys Z 26:379–384Google Scholar
  8. Ghiaasiaan SM (2008) Two-phase flow boiling and condensation in conventional and miniature systems. Cambridge University Press, CambridgeMATHGoogle Scholar
  9. Gnielinski V (1986) Wärmeübertragung in Rohren, VDI Wärmeatlas, 5th edn. VDI-Verlag, DüsseldorfGoogle Scholar
  10. Hewitt GF, Kersey HA, Lacey PMC, Pulling DJ (1965) Burnout and nucleation in climbing film flow. Int J Heat Mass Transf 8:793–814CrossRefGoogle Scholar
  11. Kim H, Kim J, Kim MH (2006) Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids. Int J Heat Mass Transf 49(25–26):5070–5074CrossRefGoogle Scholar
  12. Levy S (1967) Forced convection subcooled boiling-prediction of vapor volumetric fraction. Int J Heat Mass Transf 10:951–965CrossRefGoogle Scholar
  13. Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog 45:39–48Google Scholar
  14. Moffat RJ (1985) Using uncertainty analysis in the planning of an experiment. Trans ASME J Fluids Eng 107:173–178CrossRefGoogle Scholar
  15. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170CrossRefGoogle Scholar
  16. Peyghambarzadeh SM, Hashemabadi SH, Seifi Jamnani M, Hoseini SM (2011a) Improving the cooling performance of automobile radiator with Al2O3/water nanofluid. Appl Therm Eng 31:1833–1838CrossRefGoogle Scholar
  17. Peyghambarzadeh SM, Hashemabadi SH, Hoseini SM, Seifi Jamnani M (2011b) Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant in the car radiator. Int Commun Heat Mass Transf 38:1283–1290CrossRefGoogle Scholar
  18. Peyghambarzadeh SM, Vatani A, Jamialahmadi M (2012) Experimental study of micro-particle fouling under forced convective heat transfer. Braz J Chem Eng 29(4):713–724CrossRefGoogle Scholar
  19. Peyghambarzadeh SM, Sarafraz MM, Vaeli N, Ameri E, Vatani A, Jamialahmadi M (2013) Forced convective and subcooled flow boiling heat transfer to pure waterand n-heptane in an annular heat exchanger. Ann Nucl Energy 53:401–410CrossRefGoogle Scholar
  20. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM (2017) Experimental investigation on the heat transfer performance and pressure drop characteristics of γ-Al2O3/water nanofluid in a double tube counter flow heat exchanger. Transp Phenom Nano Micro Scales 4(1):64–77Google Scholar
  21. Salari E, Peyghambarzadeh SM, Sarafraz MM, Hormozi F, Nikkhah V (2017) Thermal behavior of aqueous iron oxide nanofluid as a coolant on a flat disc heater under the pool boiling condition. Heat Mass Transf 53(1):265–275CrossRefGoogle Scholar
  22. Salimi Gachuiee M, Peyghambarzadeh SM, Hashemabadi SH, Chabi A (2015) Experimental investigation of convective heat transfer of Al2O3/water nanofluid through the micro heat exchanger. Modares Mech Eng 15(2):270–280 (in Persian) Google Scholar
  23. Sarafraz MM, Peyghambarzadeh SM (2013) Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vertical annulus. Exp Therm Fluid Sci 50:154–162CrossRefGoogle Scholar
  24. Sarafraz MM, Peyghambarzadeh SM, Vaeli N (2012) Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space. Chem Ind Chem Eng Q (CI&CEQ) 18(2):315–327CrossRefGoogle Scholar
  25. Sarafraz MM, Hormozi F, Peyghambarzadeh SM, Vaeli N (2015) Upward flow boiling to DI-water and CuO nanofluids inside the concentric annuli. J Appl Fluid Mech 8(4):651–659CrossRefGoogle Scholar
  26. Schroder JJ (1988) Heat transfer during subcooled boiling, VDI Wärmeatlas, 5th edn. VDIeVerlag, DüsseldorfGoogle Scholar
  27. Stephan K, Abdelsalam M (1980) Heat transfer correlations for natural convection boiling. Int J Heat Mass Transf 23:73–87CrossRefGoogle Scholar
  28. Vassallo P, Kumar R, D’Amico S (2004) Pool boiling heat transfer experiments in silica-water nano-fluids. Int J Heat Mass Transf 47:407–411CrossRefGoogle Scholar
  29. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188CrossRefGoogle Scholar
  30. Wen DS, Wang BX (2002) Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. Int J Heat Mass Transf 45:1739–1747CrossRefGoogle Scholar
  31. Wen DS, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. Partriology 7:141–150CrossRefGoogle Scholar
  32. Williams W, Buongiorno J, Hu LW (2008) Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transf 130:042412CrossRefGoogle Scholar
  33. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155CrossRefGoogle Scholar
  34. You SM, Kim J, Kim KH (2003) Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 83(16):3374–3376CrossRefGoogle Scholar
  35. You H, Sheikholeslami R, Doherty WOS (2004) Flow boiling heat transfer of water and sugar solutions in an annulus, vol 50. Wiley InterScience, Hoboken, pp 1119–1128Google Scholar
  36. Zangeneh A, Vatani A, Fakhroeian Z, Peyghambarzadeh SM (2016) Experimental study of forced convection and subcooled flow boiling heat transfer in a vertical annulus using different novel functionalized ZnO nanoparticles. Appl Therm Eng 109(Part A):789–802CrossRefGoogle Scholar
  37. Zeinali Heris S, Etemad SG, Nasr Esfahany M (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf 33:529–535CrossRefGoogle Scholar
  38. Zeinali Heris S, Nasr Esfahany M, Etemad SG (2007) Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow 28:203–210CrossRefGoogle Scholar

Copyright information

© Shiraz University 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMahshahr Branch, Islamic Azad UniversityMahshahrIran

Personalised recommendations