Advertisement

Regional Frequency Analysis of Droughts Using Copula Functions (Case Study: Part of Semiarid Climate of Fars Province, Iran)

  • V. Ghafori
  • H. Sedghi
  • R. A. SharifanEmail author
  • S. M. J. Nazemosadat
Research Paper
  • 4 Downloads

Abstract

Agricultural sector of Fars Province plays a substantial role in ensuring food security in Iran. Unfortunately, in recent decade wide areas of the province have been affected by drought phenomenon. Due to significant correlation between drought characteristics and the existence of ungagged areas, in this research, a regional bivariate analysis is recruited for meteorological drought. The aims of this analysis are to shed the light upon the effects of interdependence drought characteristics on frequency of occurrence and return period, in addition, improve the results comparing to local frequency analysis in Fars Province. Drought events are analyzed via the Standardized Precipitation Index and run theory. For regional frequency analysis, the index drought procedure which is coupled with the L-moments method is employed and the bivariate distribution of drought is estimated through the copulas for a homogeneous region. The results present that the marginal distributions for duration and severity variables are exponential and 2-parameter gamma, respectively. The Gumbel copula is the most suitable copula for representing joint distribution of drought characteristics. Comparing univariate and multivariate return periods for different non-dimensional severity and durations having identical marginal cumulative distribution function amounts indicate their values are relatively close up to 20 year. However, a significant discrepancy has been revealed when univariate return periods are 50 and 100 year which have a critical role in risk analysis and water resources management. To sum up, drought severity with duration greater than 6 month was estimated in different return periods for all of stations and it is observed that drought severity in northwest is greater than the southwest in under-studied region.

Keywords

Copula functions Fars Province L-moment method Regional bivariate frequency analysis 

References

  1. Abolverdi J, Khalili D (2010) Probabilistic analysis of extreme regional meteorological droughts by L-moments in a semi-arid environment. Theor Appl Climatol 102(3):351–366.  https://doi.org/10.1007/s00704-010-0265-z CrossRefGoogle Scholar
  2. Adib A, Marashi SS (2019) Meteorological drought monitoring and preparation of long-term and short-term drought zoning maps using regional frequency analysis and L-moment in the Khuzestan province of Iran. Theor Appl Climatol 137(1–2):77–87CrossRefGoogle Scholar
  3. Ahani H, Kherad M, Kousari MR, Rezaeian-Zadeh M, Karampour MA, Ejraee F, Kamali S (2012) An investigation of trends in precipitation volume for the last three decades in different regions of Fars province, Iran. Theor Appl Climatol 109(3–4):361–382.  https://doi.org/10.1007/s00704-011-0572-z CrossRefGoogle Scholar
  4. Alley WM (1984) The Palmer drought severity index: limitations and assumptions. J Clim Appl Meteorol 23(7):1100–1109CrossRefGoogle Scholar
  5. Amirataee B, Montaseri M, Rezaie H (2018) Regional analysis and derivation of copula-based drought Severity-Area-Frequency curve in Lake Urmia basin, Iran. J Environ Manag 206:134–144CrossRefGoogle Scholar
  6. Bazrafshan J, Hejabi S, Rahimi J (2014) Drought monitoring using the multivariate standardized precipitation index (MSPI). Water Resour Manag 28(4):1045–1060.  https://doi.org/10.1007/s11269-014-0533-2 CrossRefGoogle Scholar
  7. Ben Aissia MA, Chebana F, Ouarda TB, Bruneau P, Barbet M (2015) Bivariate index-flood model: case study in Québec, Canada. Hydrol Sci J 60(2):247–268CrossRefGoogle Scholar
  8. Cancelliere A, Salas JD (2010) Drought probabilities and return period for annual streamflows series. J Hydrol 391(1–2):77–89CrossRefGoogle Scholar
  9. Chebana F, Ouarda TBMJ (2009) Index flood-based multivariate regional frequency analysis. Water Resour Res 45(10):1–15.  https://doi.org/10.1029/2008WR007490 CrossRefGoogle Scholar
  10. Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65(1):141–151MathSciNetCrossRefzbMATHGoogle Scholar
  11. Dalrymple T (1960) Flood-frequency analyses, manual of hydrology: Part 3 (No. 1543-A). USGPOGoogle Scholar
  12. Deheuvels P (1979) La fonction de dependence empirique et ses proprietes, Un test non parametrique d’independance. Bulletin de la classe des sciences, Academie Royale de Belgique, 5e serie, vol 65, pp 274–292Google Scholar
  13. Eslamian S, Hassanzadeh H, Abedi-Koupai J, Gheysari M (2011) Application of L-moments for regional frequency analysis of monthly drought indexes. J Hydrol Eng 17(1):32–42CrossRefGoogle Scholar
  14. Estrela T, Vargas E (2012) Drought management plans in the European Union. The case of Spain. Water Resour Manag 26(6):1537–1553CrossRefGoogle Scholar
  15. Farid R (2006) Bivariate frequency analysis of regional drought characteristics. Thesis, University of WaterlooGoogle Scholar
  16. Frank AG (1979) Dependent accumulation, vol 492. NYU Press, New YorkGoogle Scholar
  17. Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368.  https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347) CrossRefGoogle Scholar
  18. Genest C, Rivest L-P (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034–1043MathSciNetCrossRefzbMATHGoogle Scholar
  19. Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44(2):199–213.  https://doi.org/10.1016/j.insmatheco.2007.10.005 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resour Res 15(5):1049–1054CrossRefGoogle Scholar
  21. Grimaldi S, Kao S-C, Castellarin A, Papalexiou S-M, Viglione A, Laio F, Aksoy H, Gedikli A (2011) Statistical hydrology. In: Wilderer P (eds) Treatise on water science, vol. 2. Elsevier, pp 479–517.  https://doi.org/10.1016/B978-0-444-53199-5.00046-4
  22. Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55(292):698–707MathSciNetCrossRefzbMATHGoogle Scholar
  23. Guttman NB (1991) A sensitivity analysis of the palmer hydrologic drought index 1. JAWRA J Am Water Resour Assoc 27(5):797–807CrossRefGoogle Scholar
  24. Guttman NB (1993) The use of L-moments in the determination of regional precipitation climates. J Clim 6(12):2309–2325CrossRefGoogle Scholar
  25. Guttman NB (1998) Comparing the palmer drought index and the standardized precipitation index1. JAWRA J Am Water Resour Assoc 34(1):113–121CrossRefGoogle Scholar
  26. Haddad K, Rahman A (2012) Regional flood frequency analysis in eastern Australia: bayesian GLS regression-based methods within fixed region and ROI framework–Quantile Regression vs. Parameter Regression Technique. J Hydrol 430:142–161CrossRefGoogle Scholar
  27. Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc Ser B (Methodol) 52(1):105–124MathSciNetzbMATHGoogle Scholar
  28. Hosking JRM, Wallis JR (2005) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, CambridgeGoogle Scholar
  29. Hougaard P (1986) A class of multivanate failure time distributions. Biometrika 73(3):671–678MathSciNetzbMATHGoogle Scholar
  30. Joe H (1997) Multivariate models and multivariate dependence concepts. Chapman and Hall/CRC, CambridgeCrossRefzbMATHGoogle Scholar
  31. Li F, Zheng Q (2016) Probabilistic modelling of flood events using the entropy copula. Adv Water Resour 97:233–240CrossRefGoogle Scholar
  32. Mathier L, Perreault L, Bobée B, Ashkar F (1992) The use of geometric and gamma-related distributions for frequency analysis of water deficit. Stochast Hydrol Hydraul 6(4):239–254CrossRefGoogle Scholar
  33. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology (vol 17, no 22). American Meteorological Society, Boston, MA, pp 179–183Google Scholar
  34. Mirabbasi R, Fakheri-Fard A, Dinpashoh Y (2012) Bivariate drought frequency analysis using the copula method. Theor Appl Climatol 108(1–2):191–206CrossRefGoogle Scholar
  35. Mirabbasi R, Anagnostou EN, Fakheri-Fard A, Dinpashoh Y, Eslamian S (2013) Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. J Hydrol 492:35–48CrossRefGoogle Scholar
  36. Mirakbari M, Ganji A, Fallah SR (2012) Regional bivariate frequency analysis. J Hydrol Eng 15(12):985–1000.  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000271 CrossRefGoogle Scholar
  37. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216CrossRefGoogle Scholar
  38. Modarres R (2010) Regional dry spells frequency analysis by L-moment and multivariate analysis. Water Resour Manag 24(10):2365–2380CrossRefGoogle Scholar
  39. Nafarzadegan AR, Rezaeian Zadeh M, Kherad M, Ahani H, Gharehkhani A, Karampoor MA, Kousari MR (2012) Drought area monitoring during the past three decades in Fars province, Iran. Quat Int 250:27–36.  https://doi.org/10.1016/j.quaint.2010.12.009 CrossRefGoogle Scholar
  40. Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New YorkzbMATHGoogle Scholar
  41. Núñez JH, Verbist K, Wallis JR, Schaefer MG, Morales L, Cornelis WM (2011) Regional frequency analysis for mapping drought events in north-central Chile. J Hydrol 405(3–4):352–366CrossRefGoogle Scholar
  42. Salas JD, Fu C, Cancelliere A, Dustin D, Bode D, Pineda A, Vincent E (2005) Characterizing the severity and risk of drought in the Poudre River, Colorado. J Water Resour Plan Manag 131(5):383–393CrossRefGoogle Scholar
  43. Schweizer B, Sklar A (2011) Probabilistic metric spaces. Courier CorporationGoogle Scholar
  44. Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20(5):795–815.  https://doi.org/10.1007/s11269-005-9008-9 CrossRefGoogle Scholar
  45. Shiau JT, Modarres R (2009) Copula-based drought severity-duration-frequency analysis in Iran. Meteorol Appl 16(4):481–489CrossRefGoogle Scholar
  46. Shiau JT, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Manag 127(1):30–40CrossRefGoogle Scholar
  47. Shiau J-T, Feng S, Nadarajah S (2007) Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol Process 21(16):2157–2163CrossRefGoogle Scholar
  48. Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231zbMATHGoogle Scholar
  49. Tosunoglu F, Can I (2016) Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey. Nat Hazards 82(3):1457–1477.  https://doi.org/10.1007/s11069-016-2253-9 CrossRefGoogle Scholar
  50. Vaziri H, Karami H, Mousavi SF, Hadiani M (2018) Analysis of hydrological drought characteristics using copula function approach. Paddy Water Environ 16(1):153–161CrossRefGoogle Scholar
  51. Xiong L, Yu K, Gottschalk L (2014) Estimation of the distribution of annual runoff from climatic variables using copulas. Water Resour Res 50(9):7134–7152CrossRefGoogle Scholar
  52. Yusof F, Hui-Mean F, Suhaila J, Yusof Z (2013) Characterisation of drought properties with bivariate copula analysis. Water Resour Manag 27(12):4183–4207.  https://doi.org/10.1007/s11269-013-0402-4 CrossRefGoogle Scholar
  53. Zelenhasić E, Salvai A (1987) A method of streamflow drought analysis. Water Resour Res 23(1):156–168CrossRefGoogle Scholar
  54. Zhang LSVP, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164CrossRefGoogle Scholar
  55. Zhang Q, Xiao M, Singh VP, Li J (2012) Regionalization and spatial changing properties of droughts across the Pearl River basin, China. J Hydrol 472–473:355–366.  https://doi.org/10.1016/j.jhydrol.2012.09.054 CrossRefGoogle Scholar
  56. Zhang Q, Qi T, Singh VP, Chen YD, Xiao M (2015) Regional frequency analysis of Droughts in China: a multivariate perspective. Water Resour Manag 29(6):1767–1787.  https://doi.org/10.1007/s11269-014-0910-x CrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  1. 1.Department of Agricultural Systems Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Water Resources Engineering, Shiraz BranchIslamic Azad UniversityShirazIran
  3. 3.Department of Oceanic and Atmospheric Research Centre and Water Engineering, Faculty of AgricultureShiraz UniversityShirazIran

Personalised recommendations