Advertisement

Trend Analyses of Extreme Precipitation Indices Based on Downscaled Outputs of Global Circulation Models in Western Black Sea Basin, Turkey

  • Mustafa Nuri BalovEmail author
  • Abdüsselam Altunkaynak
Research Paper
  • 20 Downloads

Abstract

In this study, the impacts of climate change on the extreme precipitation indices in the Western Black Sea Basin, Turkey, were investigated in terms of trend analyses based on the historical and projected daily precipitation data. Eight extreme precipitation indices were computed using the reference period data obtained from nine meteorological stations and dynamically downscaled outputs of GFDL-ESM2M, HadGEM2-ES and MPI-ESM-MR global circulation models (GCMs) under RCP4.5 and RCP8.5 emission scenarios. The biases in the outputs of GCMs were corrected by using the linear scaling method. The Mann–Kendall and Spearman’s rho tests were utilized to detection of the trend in the precipitation indices during the reference (1971–2000) and future periods (2020–2099). The results of the analyses for the reference period showed a strong increasing trend in indices in the eastern part of the basin and nonsignificant trends (both increasing and decreasing) in the western part. On the other hand, for the future period, the results demonstrated that the amount of total precipitation will increase (a positive trend in PRCPTOT). However, the number of dry days will increase. This situation indicates that there will be no significant change in the total amount of precipitation, but there will be an increase in the intensity of precipitation and the number of dry days during the coming years that can cause flooding and drought, respectively. Therefore, suitable adaptive and mitigative actions have to be taken, especially in terms of urban planning and agriculture.

Keywords

Climate change Western Black Sea basin Turkey GFDL-ESM2M HadGEM2-ES Trend analyses Mann–Kendall test Spearman’s rho test 

Notes

Acknowledgements

The authors wish to thank to the Turkish State Meteorological Service for providing climatic data. This research was partially funded by Istanbul Technical University (ITU) under BAP Unit (Project No. 39550).

References

  1. Altın TB, Barak B (2014) Changes and trends in total yearly precipitation of the Antalya District, Turkey. Procedia Soc Behav Sci 120:586–599.  https://doi.org/10.1016/j.sbspro.2014.02.139 CrossRefGoogle Scholar
  2. Altın TB, Barak B (2017) Trends and changes in tropical and summer days at the adana sub-region of the Mediterranean Region, Southern Turkey. Atmos Res 196:182–199.  https://doi.org/10.1016/j.atmosres.2017.06.017 CrossRefGoogle Scholar
  3. Asikoglu OL, Ciftlik D (2015) Recent rainfall trends in the Aegean Region of Turkey. J Hydrometeorol 16(4):1873–1885.  https://doi.org/10.1175/JHM-D-15-0001.1 CrossRefGoogle Scholar
  4. Ay M, Kisi O (2015) Investigation of trend analysis of monthly total precipitation by an innovative method. Theor Appl Climatol 120(3–4):617–629.  https://doi.org/10.1007/s00704-014-1198-8 CrossRefGoogle Scholar
  5. Bacanli ÜG (2017) Trend analysis of precipitation and drought in the Aegean Region, Turkey. Meteorol Appl 24(2):239–249.  https://doi.org/10.1002/met.1622 CrossRefGoogle Scholar
  6. Chattopadhyay S, Edwards DR, Yao Yu (2017) Contemporary and future characteristics of precipitation indices in the Kentucky River Basin. Water (Switzerland) 9(2):1–20.  https://doi.org/10.3390/w9020109 Google Scholar
  7. Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for india under representative concentration pathways. Curr Sci 103(7):791–802.  https://doi.org/10.2307/24088836 Google Scholar
  8. Cho J, Ko G, Kim K, Oh C (2016) Climate change impacts on agricultural drought with consideration of uncertainty in CMIP5 scenarios. Irrig Drain 65:7–15CrossRefGoogle Scholar
  9. Çiçek İ, Duman N (2015) Seasonal and annual precipitation trends in Turkey. Carpathian J Earth Environ Sci 10(2):77–84Google Scholar
  10. Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) HESS opinions ‘should we apply bias correction to global and regional climate model data?’. Hydrol Earth Syst Sci 16(9):3391–3404.  https://doi.org/10.5194/hess-16-3391-2012 CrossRefGoogle Scholar
  11. Elguindi N, Bi X, Giorgi F, Nagarajan B, Pal JS, Solmon F, Rauscher S et al (2014) Regional climate model RegCM: reference manual version 4.5, no. MayGoogle Scholar
  12. Gokmen M (2016) Spatio-temporal trends in the hydroclimate of Turkey for the last decades based on two reanalysis datasets. Hydrol Earth Syst Sci 20(9):3777–3788.  https://doi.org/10.5194/hess-20-3777-2016 CrossRefGoogle Scholar
  13. Goubanova K, Li L (2007) Extremes in temperature and precipitation around the Mediterranean Basin in an ensemble of future climate scenario simulations. Global Planet Change 57(1–2):27–42.  https://doi.org/10.1016/j.gloplacha.2006.11.012 CrossRefGoogle Scholar
  14. Hagemann S, Chen C, Haerter JO, Heinke J, Gerten D, Piani C (2011) Impact of a statistical bias correction on the projected hydrological changes obtained from three gcms and two hydrology models. J Hydrometeorol 12(4):556–578.  https://doi.org/10.1175/2011JHM1336.1 CrossRefGoogle Scholar
  15. Haktanir T, Citakoglu H (2014) Trend, independence, stationarity, and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey. J Hydrol Eng 19(9):05014009.  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000973 CrossRefGoogle Scholar
  16. Hamed KH (2009) Exact distribution of the Mann–Kendall trend test statistic for persistent data. J Hydrol 365(1–2):86–94.  https://doi.org/10.1016/j.jhydrol.2008.11.024 CrossRefGoogle Scholar
  17. Hashino T, Bradley AA, Schwartz SS (2007) Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrol Earth Syst Sci 11:939–950.  https://doi.org/10.5194/hess-11-939-2007 CrossRefGoogle Scholar
  18. Hawkins E, Osborne TM, Ho CK, Challinor AJ (2013) Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agric For Meteorol 170:19–31.  https://doi.org/10.1016/j.agrformet.2012.04.007 CrossRefGoogle Scholar
  19. IPCC (2013) Climate change 2013: the physical sciences basis. Cambridge University Press, CambridgeGoogle Scholar
  20. Kendall MG (1957) Rank correlation methods, 4th edn. Charles Griffin, LondonGoogle Scholar
  21. Klein Tank AMG, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. Climate Data and Monitoring WCDMP-No. 72. World Meteorological Organization, p 52Google Scholar
  22. Kum G, Çelik MA (2014) Impacts of global climate change on the mediterranean region: Adana as a case study. Procedia Soc Behav Sci 120:600–608.  https://doi.org/10.1016/j.sbspro.2014.02.140 CrossRefGoogle Scholar
  23. Li X, Zeng Zhen H, Jiang X, Li Y, Gao Z, Yang S, Zhu J, Jha B (2016) Trend and seasonality of land precipitation in observations and CMIP5 model simulations. Int J Climatol 36(11):3781–3793.  https://doi.org/10.1002/joc.4592 CrossRefGoogle Scholar
  24. Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245.  https://doi.org/10.2307/1907187 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Maraun D (2016) Bias correcting climate change simulations—a critical review. Curr Clim Change Rep 2(4):211–220.  https://doi.org/10.1007/s40641-016-0050-x CrossRefGoogle Scholar
  26. Mohan TS, Rajeevan M (2017) Past and future trends of hydroclimatic intensity over the Indian Monsoon Region. J Geophys Res Atmos 122(2):896–909.  https://doi.org/10.1002/2016JD025301 CrossRefGoogle Scholar
  27. Muerth MJ, Gauvin St-Denis B, Ricard S, Velázquez JA, Schmid J, Minville M, Caya D, Chaumont D, Ludwig R, Turcotte R (2012) On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol Earth Syst Sci Dis 9(9):10205–10243.  https://doi.org/10.5194/hessd-9-10205-2012 CrossRefGoogle Scholar
  28. Nigussie TA, Altunkaynak A (2018) Impacts of climate change on the trends of extreme rainfall indices and values of maximum precipitation at Olimpiyat Station, Istanbul, Turkey. Theor Appl Climatol:1–15.  https://doi.org/10.1007/s00704-018-2449-x
  29. Pal I, Al-Tabbaa A (2009) Trends in seasonal precipitation extremes—an indicator of ‘climate change’ in Kerala, India. J Hydrol 367(1–2):62–69.  https://doi.org/10.1016/j.jhydrol.2008.12.025 CrossRefGoogle Scholar
  30. Peng S, Ding Y, Wen Z, Chen Y, Cao Y, Ren J (2017) Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric For Meteorol 233:183–194.  https://doi.org/10.1016/j.agrformet.2016.11.129 CrossRefGoogle Scholar
  31. Prasanna V (2018) Statistical bias correction method applied on CMIP5 datasets over the Indian region during the summer monsoon season for climate change applications. Theor Appl Climatol 131(1–2):471–488.  https://doi.org/10.1007/s00704-016-1974-8 CrossRefGoogle Scholar
  32. Räty O, Räisänen J, Ylhäisi JS (2014) Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations. Clim Dyn 42(9–10):2287–2303.  https://doi.org/10.1007/s00382-014-2130-8 CrossRefGoogle Scholar
  33. Shadmani M, Marofi S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman’s rho tests in arid regions of Iran. Water Resour Manage 26(1):211–224.  https://doi.org/10.1007/s11269-011-9913-z CrossRefGoogle Scholar
  34. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29.  https://doi.org/10.1016/j.jhydrol.2012.05.052 CrossRefGoogle Scholar
  35. Toros H, Abbasnia M, Sagdic M, Tayanç M (2017) Long-term variations of temperature and precipitation in the megacity of Istanbul for the development of adaptation strategies to climate change. Adv Meteorol 2017:6519856.  https://doi.org/10.1155/2017/6519856 CrossRefGoogle Scholar
  36. Tschöke GV, Kruk NS, de Queiroz PIB, Chou SC, de Sousa Junior WC (2017) Comparison of two bias correction methods for precipitation simulated with a regional climate model. Theoret Appl Climatol 127(3–4):841–852.  https://doi.org/10.1007/s00704-015-1671-z CrossRefGoogle Scholar
  37. Tübitak (2013) Havza Koruma Eylem Planlarinin Hazirlanmasi Projesi Bati Karadeniz Havzasi. KocaekiGoogle Scholar
  38. Wang Y, Zhou B, Qin D, Jia W, Gao R, Song L (2017) Changes in mean and extreme temperature and precipitation over the arid region of Northwestern China: Observation and projection. Adv Atmos Sci 34(3):289–305.  https://doi.org/10.1007/s00376-016-6160-5 CrossRefGoogle Scholar
  39. Wen X, Fang G, Qi H, Zhou L, Gao Y (2016) Changes of temperature and precipitation extremes in China: past and future. Theor Appl Climatol 126(1–2):369–383.  https://doi.org/10.1007/s00704-015-1584-x CrossRefGoogle Scholar
  40. Xiao Z, Zhou X, Yang P, Liu H (2016) Variation and future trends in precipitation over summer and autumn across the Yunnan Region. Front Earth Sci 10(3):498–512.  https://doi.org/10.1007/s11707-015-0523-6 CrossRefGoogle Scholar
  41. Yazid M, Humphries U (2015) Regional observed trends in daily rainfall indices of extremes over the Indochina Peninsula from 1960 to 2007. Climate 3(1):168–192.  https://doi.org/10.3390/cli3010168 CrossRefGoogle Scholar
  42. Yildirim HA, Altinsoy H (2017) Chaos and trend analysis of monthly precipitation over Arabian Peninsula and Eastern Mediterranean. Arab J Geosci 10(2):21.  https://doi.org/10.1007/s12517-016-2784-0 CrossRefGoogle Scholar
  43. Yilmaz AG (2015) The effects of climate change on historical and future extreme rainfall in Antalya, Turkey. Hydrol Sci J 60(12):2148–2162.  https://doi.org/10.1080/02626667.2014.945455 CrossRefGoogle Scholar
  44. Yucel I, Güventürk A, Sen OL (2015) Climate change impacts on snowmelt runoff for mountainous transboundary basins in Eastern Turkey. Int J Climatol 35(2):215–228.  https://doi.org/10.1002/joc.3974 CrossRefGoogle Scholar
  45. Yue S, Wang CY (2002) Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resour Res 38(6):1–7.  https://doi.org/10.1029/2001WR000861 CrossRefGoogle Scholar
  46. Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259(1–4):254–271.  https://doi.org/10.1016/S0022-1694(01)00594-7 CrossRefGoogle Scholar
  47. Yürekli K (2015) Impact of climate variability on precipitation in the upper euphrates-Tigris Rivers Basin of Southeast Turkey. Atmos Res 154:25–38.  https://doi.org/10.1016/j.atmosres.2014.11.002 CrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  1. 1.Hydraulics and Water Resources Division, Faculty of Civil EngineeringIstanbul Technical UniversityMaslak, IstanbulTurkey

Personalised recommendations