Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multi-switching Synchronization of Different Orders: A Generalization of Increased/Reduced Order Synchronization

Abstract

In this computational study, the author presents the multi-switching synchronization for different orders of drive and response systems using the adaptive sliding mode controllers. Furthermore, the author shows that increased/reduced order synchronization is a special case of multi-switching synchronization of different orders. For different switches, the Circular Restricted Three Body Problem and Lorenz chaotic systems are taken as a drive and response systems, respectively. Furthermore, in the computational study, the effects of both unknown model uncertainties and external disturbances are also considered.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. Chen X, Park JH, Cao J, Qiu J (2017) Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances. Appl Math Comput 308:161–173

  2. Chen X, Cao J, Park JH, Zong G, Qiu J (2018a) Finite-time complex function synchronization of multiple complex-variable chaotic systems with network transmission and combination mode. J Vib Control 24(22):5461–5471

  3. Chen X, Cao J, Park JH, Huang T, Qiu Q (2018b) Finite-time multi-switching synchronization behavior for multiple chaotic systems with network transmission mode. J Franklin Inst 355(5):2892–2911

  4. Chen X, Park JH, Cao J, Qiu J (2018c) Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control. Neurocomputing 273:9–21

  5. Chen X, Huang T, Cao J, Park JH, Qiu J (2019) Finite-time multi-switching sliding mode synchronization for multiple uncertain complex chaotic systems with network transmission mode. IET Control Theory Appl 13(9):1246–1257

  6. Khan A, Shahzad M (2013) Synchronization of circular restricted three body problem with Lorenz hyper chaotic system using a robust adaptive sliding mode controller. Complexity 18:58–64

  7. Khan A, Khattar D, Prajapati N (2017a) Adaptive multi switching combination synchronization of chaotic systems with unknown parameters. Int J Dyn Control. https://doi.org/10.1007/s40435-017-0320-z

  8. Khan A, Khattar D, Prajapati N (2017b) Multiswitching combination–combination synchronization of chaotic systems. Pramana 88(3):47. https://doi.org/10.1007/s12043-016-1356-x

  9. Lorenz E (1963) Deterministic nonperiodic flows. J Atmos Sci 20:130–141

  10. Ojo K, Njah A, Olusola O (2015) Generalized function projective combination–combination synchronization of chaos in third order chaotic systems. Chin J Phys 53(3):11–16. https://doi.org/10.6122/CJP.20150311C

  11. Pourmahmood M, Khanmohammadi S, Alizadeh G (2011) Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun Nonlinear Sci Numer Simulat 16:2853–2868

  12. Runzi L, Yinglan W, Shucheng D (2011) Combination synchronization of three classic chaotic systems using active backstepping design. Chaos 21(4):043114. https://doi.org/10.1063/1.3655366

  13. Shahzad M (2015) The improved results with mathematica and effects of external uncertainty & disturbances on synchronization using a robust adaptive sliding mode controller: a comparative study. Nonlinear Dyn 79(3):2037–2054

  14. Shahzad M, Ahmad I, Saaban AB, Ibrahim AB (2016) Improved time response of stabilization in synchronization of chaotic oscillators using Mathematica. Systems 4(2):1–21

  15. Sparrow C (1982) The Lorenz equations: bifurcations, chaos, and strange attractors. Springer, Berlin

  16. Strogatz SH (2011) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Westview Press, Boulder

  17. Sun J, Shen Y (2016) Compound-combination anti-synchronization of five simplest memristor chaotic systems. Optik 127(20):9192–9200. https://doi.org/10.1016/j.ijleo.2016.06.043

  18. Sun J, Shen Y, Zhang G, Xu C, Cui G (2013a) Combination–combination synchronization among four identical or different chaotic systems. Nonlinear Dyn 73(3):1211–1222. https://doi.org/10.1007/s11071-012-0620-y

  19. Sun J, Shen Y, Yin Q, Xu C (2013b) Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 23(1):013140. https://doi.org/10.1063/1.4794794

  20. Sun J, Wang Y, Wang Y, Cui G, Shen Y (2016a) Compound-combination synchronization of five chaotic systems via nonlinear control. Optik 127(8):4136–4143. https://doi.org/10.1016/j.ijleo.2016.01.018

  21. Sun J, Wang Y, Wang Y, Shen Y (2016b) Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control. Nonlinear Dyn 85(2):1105–1117

  22. Sun J, Wu Y, Cui G, Yanfeng W (2017) Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn 88(3):1677–1690

  23. Szebehely V (1967) Theory of orbits. Academic Press, San Diego

  24. Tian B, Lu H, Zuo Z, Wang H (2018) Fixed-time stabilization of high-order integrator systems with mismatched disturbances. Nonlinear Dyn 94(4):2889–2899

  25. Ucar A, Lonngren KE, Bai E-W (2008) Multi-switching synchronization of chaotic systems with active controllers. Chaos Solitons Fract 38(1):254–262. https://doi.org/10.1016/j.chaos.2006.11.041

  26. Vincent UE, Saseyi A, McClintock PV (2015) Multi-switching combination synchronization of chaotic systems. Nonlinear Dyn 80(1–2):845–854. https://doi.org/10.1007/s11071-015-1910-y

  27. Wang XY, Sun P (2011) Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters. Nonlinear Dyn 63:599–609. https://doi.org/10.1007/s11071-010-9822-3

  28. Wu Z, Fu X (2013) Combination synchronization of three different order nonlinear systems using active backstepping design. Nonlinear Dyn 73(3):1863–1872. https://doi.org/10.1007/s11071-013-0909-5

  29. Yang C, Cai H, Zhou P (2016) Compound generalized function projective synchronization for fractional-order chaotic systems. Discrete Dyn Nat Soc. https://doi.org/10.1155/2016/7563416

  30. Zhang B, Deng F (2014) Double-compound synchronization of six memristor-based lorenz systems. Nonlinear Dyn 77(4):1519–1530. https://doi.org/10.1007/s11071-014-1396-z

Download references

Author information

Correspondence to Mohammad Shahzad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahzad, M. Multi-switching Synchronization of Different Orders: A Generalization of Increased/Reduced Order Synchronization. Iran J Sci Technol Trans Sci 44, 167–176 (2020). https://doi.org/10.1007/s40995-019-00806-1

Download citation

Keywords

  • Multi-switching synchronization
  • Adaptive sliding mode control
  • CRTBP