Bivariate Dunkl Analogue of Stancu Type q-Szász–Mirakjan–Kantorovich Operators and Rate of Convergence
Research Paper
First Online:
- 7 Downloads
Part of the following topical collections:
Abstract
In the present paper, we prove some results on rate of convergence for Dunkl analogue of Stancu type q-Szász–Mirakjan–Kantorovich operators in terms of second-order modulus of continuity and Lipschitz functions. Further, we construct the bivariate extension of these operators and obtain some approximation results.
Keywords
q-Integers q-Exponential functions q-Hypergeometric functions Szász operators Dunkl analogue of Stancu type q-Szász–Mirakjan–Kantorovich operators Modulus of continuity Lipschitz functions Peetre’s K-functionalMathematics Subject Classification
Primary 41A25 41A36 Secondary 33C45Notes
Acknowledgements
The author would like to thank the reviewers for their useful suggestions which improved the present paper.
References
- Acar T, Mohiuddine SA, Mursaleen M (2018a) Approximation by (p, q)-Baskakov–Durrmeyer–Stancu operators. Complex Anal Oper Theory 12:1453–1468MathSciNetCrossRefGoogle Scholar
- Acar T, Aral A, Mohiuddine SA (2018b) Approximation by bivariate (p, q)-Bernstein–Kantorovich operators. Iran J Sci Technol Trans Sci 42:655–662MathSciNetCrossRefGoogle Scholar
- Acar T, Aral A, Mursaleen M (2018c) Approximation by Baskakov–Durrmeyer operators based on (p, q)-integers. Math Slovaca 68(4):897–906MathSciNetCrossRefGoogle Scholar
- Bernstein SN (1912) Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Commun Soc Math Kharkow 2(13):1–2zbMATHGoogle Scholar
- Bin Jebreen H, Mursaleen M, Ahasan M (2019) On the convergence of Lupaş (p, q)-Bernstein operators via contraction principle. J Inequal Appl 2019:34MathSciNetCrossRefGoogle Scholar
- Cheikh YB, Gaied M, Zaghouani A (2014) q-Dunkl-classical q-Hermite type polynomials. Georgian Math J 21(2):125–137MathSciNetzbMATHGoogle Scholar
- Ciupa A (1995) A class of integral Favard–Szász type operators. Stud Univ Babeş-Bolyai Math 40(1):39–47MathSciNetzbMATHGoogle Scholar
- İçöz G, Çekim B (2015) Dunkl generalization of Szász operators via q-calculus. J Inequal Appl 2015:284CrossRefGoogle Scholar
- İçöz G, Çekim B (2016) Stancu-type generalization of Dunkl analogue of Szász–Kantorovich operators. Math Methods Appl Sci 39(7):1803–1810MathSciNetCrossRefGoogle Scholar
- Khan A, Sharma V (2018) Statistical approximation by (p, q)-analogue of Bernstein–Stancu operators. Azerbaijan J Math 8(2):100–121MathSciNetzbMATHGoogle Scholar
- Khan K, Lobiyal DK, Kilicman A (2019) Bézier curves and surfaces based on modified Bernstein polynomials. Azerbaijan J Math 9(1):3–21MathSciNetzbMATHGoogle Scholar
- Korovkin PP (1953) Convergence of linear positive operators in the spaces of continuous functions. Dokl Akad Nauk SSSR (NS) 90:961–964 (in Russian)MathSciNetGoogle Scholar
- Lupaş A (1987) A q-analogue of the Bernstein operator. In: Seminar on numerical and statistical calculus, vol 9. University of Cluj-Napoca, pp 85–92Google Scholar
- Mohiuddine SA, Acar T, Alotaibi A (2017) Construction of a new family of Bernstein–Kantorovich operators. Math Methods Appl Sci 40:7749–7759MathSciNetCrossRefGoogle Scholar
- Mohiuddine SA, Acar T, Alotaibi A (2018) Durrmeyer type (p, q)-Baskakov operators preserving linear functions. J Math Inequal 12(4):961–973MathSciNetCrossRefGoogle Scholar
- Mursaleen M, Ahasan M (2018) The Dunkl generalization of Stancu type q-Szász–Mirakjan–Kantorovich operators and some approximation results. Carpathian J Math 34(3):363–370MathSciNetGoogle Scholar
- Mursaleen M, Ansari KJ (2017) Approximation of q-Stancu–Beta operators which preserve \(x^{2}\). Bull Malays Math Sci Soc 40(4):1479–1491MathSciNetCrossRefGoogle Scholar
- Mursaleen M, Khan A (2013) Generalized q-Bernstein–Schurer operators and some approximation theorems. J Funct Spaces Appl 2013, 719834MathSciNetCrossRefGoogle Scholar
- Mursaleen M, Khan T (2017) On approximation by Stancu type Jakimovski–Leviatan–Durrmeyer operators. Azerbaijan J Math 7(1):16–26MathSciNetzbMATHGoogle Scholar
- Mursaleen M, Nasiruzzaman Md (2018) Approximation of modified Jakimovski–Leviatan–Beta type operators. Constr Math Anal 1(2):88–98Google Scholar
- Mursaleen M, Khan F, Khan A (2015a) Approximation properties for modified q-Bernstein–Kantorovich operators. Numer Funct Anal Optim 36(9):1178–1197MathSciNetCrossRefGoogle Scholar
- Mursaleen M, Khan F, Khan A (2015b) Approximation properties for King’s type modified q-Bernstein–Kantorovich operators. Math Methods Appl Sci 38:5242–5252MathSciNetCrossRefGoogle Scholar
- Mursaleen M, Rahman S, Alotaibi A (2016a) Dunkl generalization of q-Szász–Mirakjan Kantorovich operators which preserve some test functions. J Inequal Appl 2016(1):317CrossRefGoogle Scholar
- Mursaleen M, Khan F, Khan A (2016b) Approximation by (p, q)-Lorentz polynomials on a compact disk. Complex Anal Oper Theory 10(8):1725–1740MathSciNetCrossRefGoogle Scholar
- Rosenblum M (1994) Generalized Hermite polynomials and the Bose-like oscillator calculus. Oper Theory Adv Appl 73:369–396MathSciNetzbMATHGoogle Scholar
- Srivastava HM, Mursaleen M, Alotaibi A, Nasiruzzaman Md, Al-Abied AAH (2017) Some approximation results involving the q-Szász–Mirakjan–Kantrovich type operators via Dunkl’s generalization. Math Methods Appl Sci 40(15):5437–5452MathSciNetCrossRefGoogle Scholar
- Srivastava HM, Özgerand F, Mohiuddine SA (2019) Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter \(\lambda \). Symmetry 11:316. https://doi.org/10.3390/sym11030316 CrossRefzbMATHGoogle Scholar
- Sucu S (2014) Dunkl analogue of Szász operators. Appl Math Comput 244:42–48MathSciNetzbMATHGoogle Scholar
- Szász O (1950) Generalization of S. Bernstein’s polynomials to the infinite interval. J Res Natl Bur Stand 45:239–245MathSciNetCrossRefGoogle Scholar
- Ulusoy U, Acar T (2016) q-Voronovskaya type theorems for q-Baskakov operators. Math Methods Appl Sci 39(12):3391–3401MathSciNetCrossRefGoogle Scholar
Copyright information
© Shiraz University 2019