Advertisement

Stieltjes Sample Characteristic Function: Singular Continuous Distributions Parameters Estimation

  • P. Ahmadi Ghotbi
  • Z. ShisheborEmail author
  • A. R. Soltani
Research Paper
  • 7 Downloads
Part of the following topical collections:
  1. Mathematics

Abstract

In this paper, the Steiltjes sample characteristic function is introduced and studied. It is applied to establish a new parameter estimation method. The method is useful to estimate parameters of singular continuous distributions, where other estimation procedures such as maximum likelihood and empirical characteristic function fail to be applied. We fit well the Cantor's type distribution with the parameters estimated by the proposed method on the log returns of the daily price of Brazilian coffee. Effectiveness of the estimation approach is also numerically demonstrated in estimating the parameters of the standard two-sided power and the asymmetric Laplace distributions, using simulated and a real financial data set. Certain theoretical derivations concerning the Stieltjes sample characteristic function are given as well.

Keywords

Asymmetric Laplace Bold play Cantor Singular continuous Standard two-sided power Stieltjes sample characteristic function 

References

  1. Barndorff-Nielsen O (1963) On the limit behaviour of extreme order statistics. Ann Math Stat 34(3):992–1002MathSciNetCrossRefGoogle Scholar
  2. Billingsley P (1983) The singular function of bold play: Gambling theory provides a natural examples of a function with anomalous differentiability properties. Am Sci 71(4):392–397Google Scholar
  3. Billingsley P (2008) Probability and measure. Wiley, New YorkzbMATHGoogle Scholar
  4. Carmona R (2014) Statistical analysis of financial data in R, vol 2. Springer, New YorkCrossRefGoogle Scholar
  5. Carrasco M, Florens J-P (2002) Efficient GMM estimation using the empirical characteristic function. No. 140. Institut d’Économie Industrielle (IDEI), ToulouseGoogle Scholar
  6. De Haan L, Ferreira A (2007) Extreme value theory: an introduction. Springer, BerlinzbMATHGoogle Scholar
  7. Deheuvels P (1984) Strong limit theorems for maximal spacings from a general univariate distribution. Ann Prob 12:1181–1193MathSciNetCrossRefGoogle Scholar
  8. Dovgoshey O et al (2006) The cantor function. Expo Math 24(1):1–37MathSciNetCrossRefGoogle Scholar
  9. Feuerverger A, McDunnough P (1981) On the efficiency of empirical characteristic function procedures. J R Stat Soc Ser B (Methodol) 43:20–27MathSciNetzbMATHGoogle Scholar
  10. Feuerverger A, Mureika RA (1977) The empirical characteristic function and its applications. Ann Stat 5(1):88–97MathSciNetCrossRefGoogle Scholar
  11. Galambos J (1978) The asymptotic theory of extreme order statistics. No. 04; QA274, G3Google Scholar
  12. Heathcote CR (1977) The integrated squared error estimation of parameters. Biometrika 64(2):255–264MathSciNetCrossRefGoogle Scholar
  13. Hsu EP (1992) A class of singular continuous functions. Elem Math 47(4):169–172MathSciNetzbMATHGoogle Scholar
  14. Kogon SM, Williams DB (1998) Characteristic function based estimation of stable parameters. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tailed data. Birkhauser, Boston, pp 311–335Google Scholar
  15. Meintanis S, Stupfler G (2015) Transformations to symmetry based on the probability weighted characteristic function. Kybernetika 51:571–587MathSciNetzbMATHGoogle Scholar
  16. Meintanis SG, Ushakov NG (2016) Nonparametric probability weighted empirical characteristic function and applications. Stat Probab Lett 108:52–61MathSciNetCrossRefGoogle Scholar
  17. Schuster EF (1991) Minimizing l1-distance between distribution functions. Probab Math Stat 12:265–270zbMATHGoogle Scholar
  18. Soltani AR, Abdollahnezhad K (2017) Limiting behavior of random Stieltjes partial sum: adjusted method of moments estimators. Commun Stat Theory Methods 46(18):9053–9062MathSciNetCrossRefGoogle Scholar
  19. Tran KC (1998) Estimating mixtures of normal distributions via empirical characteristic function. Econom Rev 17(2):167–183MathSciNetCrossRefGoogle Scholar
  20. Van Dorp JR, Kotz S (2002) The standard two-sided power distribution and its properties: with applications in financial engineering. Am Stat 56(2):90–99MathSciNetCrossRefGoogle Scholar
  21. Yu J (2004) Empirical characteristic function estimation and its applications. Econom Rev 23(2):93–123MathSciNetCrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  1. 1.Department of Statistics, Faculty of SciencesShiraz UniversityShirazIran
  2. 2.Department of Statistics and Operations Research, Faculty of ScienceKuwait UniversityKuwait CityKuwait

Personalised recommendations